One Sentence Summary

Upon measurement, the wave function of a particle assumes an eigenfunction of that measurement operator, and not all measurement operators have the same eigenfunctions.

Chapter 1

Solution of the Schrödinger Equation determines the future system behavior:

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V(x) \Psi
$$

The probability of a particle in (a, b) :

$$
P_{(a, b)}=\int_{a}^{b} d x\|\Psi(x, t)\|^{2}
$$

The probability of a particle anywhere:

$$
P_{(\text {space })}=\int_{x} d x\|\Psi(x, t)\|^{2}=1
$$

Not all wave functions correspond to a particle $\left(\Psi(x)=0\right.$ or $\left.\lim _{x \rightarrow \infty} \Psi(x) \neq 0\right)$, otherwise, they may be normalized once so $P_{(\text {space })}=1$ holds for all time.
The expectation value of $f(x)$:

$$
\langle f(x)\rangle=\int_{x} d x \Psi^{*}(x, t) f(x) \Psi(x, t)
$$

The standard deviation of $f(x)$:

$$
\sigma(f(x))=\sqrt{\left\langle(f(x))^{2}\right\rangle-\langle f(x)\rangle^{2}}
$$

The expectation value of position:

$$
\langle x\rangle=\int_{x} d x \Psi^{*}(x, t)[x] \Psi(x, t)
$$

The expectation value of momentum:

$$
\langle p\rangle=m \frac{d\langle x\rangle}{d t}=\int_{x} d x \Psi^{*}\left[-i \hbar \frac{\partial}{\partial x}\right] \Psi
$$

These are useful because: "all classical dynamical variables can be expressed in terms of position and momentum."
The de Broglie formula relates:

$$
p=\frac{2 \pi \hbar}{\lambda}
$$

Now: "the more precisely determined a particle's position is, the less precisely determined a particle's momentum is." Which is the Uncertainty Principle:

$$
\sigma(x) \sigma(p) \geq \frac{\hbar}{2}
$$

Chapter 2

If $V(x, t)$ is independent of t then:

$$
\Psi(x, t)=\psi(x) \varphi(t)
$$

Which may be written as two ODEs, with solving and $H=p^{2} / 2 m+V(x)$:
$\frac{d \varphi}{d t}=-\frac{i E}{\hbar} \varphi \Longrightarrow \varphi(t)=\exp \left(-\frac{i E t}{\hbar}\right)$
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi \Longrightarrow H \psi=E \psi$
Properties of separable solutions, $\psi(x)$:

- the probability density is time independent for "stationary states"
- wave function is a linear combination of the separable solutions
- definite total energy for solutions

Assuming completeness of $\left\{\psi_{n}\right\}$:

$$
\Psi(x, t)=\sum_{n} c_{n} \psi_{n} \exp \left(-\frac{i E t}{\hbar}\right)
$$

Where the projection operator finds:

$$
c_{n}=\int_{x} d x \psi_{n}^{*} f(x)
$$

The probability of an eigenfunction, and probability of all eigenfunctions:

$$
P\left(E_{n}\right)=\left|c_{n}\right|^{2} \quad \text { and } \quad \sum_{n}\left|c_{n}\right|^{2}=1
$$

Hamiltonian's eigenvalues are energies:
$\langle H\rangle=\int_{x} d x \Psi^{*}[H] \Psi=E \int_{x} d x\|\Psi\|^{2}=E$ Hamiltonian's expectation value is continuous, but the energies are discrete:

$$
\langle H\rangle=\sum_{n}\left|c_{n}\right|^{2} E_{n} \quad \text { and } \quad \sigma(H)=0
$$

Infinite Square Well

Potential for the infinite square well:

$$
V(x)= \begin{cases}\infty & x<0 \\ 0 & 0 \leq x \leq a \\ \infty & a<x\end{cases}
$$

The SEQ is then, with $k=\sqrt{2 m E / \hbar^{2}}$:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}=E \psi \Longrightarrow \frac{d^{2} \Psi}{d x^{2}}=-k^{2} \Psi
$$

The general solution to this ODE is:

$$
\psi(x)=A \sin \left(k_{n} x\right)+B \cos \left(k_{n} x\right)
$$

Normalizing and considering boundary values, $A=\sqrt{2 / a}$ and $k_{n}=n \pi / a$:

$$
\Psi(x)= \begin{cases}0 & x<0 \\ A \sin \left(k_{n} x\right) & 0 \leq x \leq a \\ 0 & a<x\end{cases}
$$

Infinite Square Well (CONTINUED)

Note, k is the free space wave vector:

$$
\hbar k=\hbar \sqrt{\frac{2 m}{\hbar^{2}} \cdot E}=\sqrt{2 m \cdot \frac{p^{2}}{2 m}}=p
$$

Solving the permitted momenta for E :

$$
E_{n}=T_{n}=\frac{p_{n}^{2}}{2 m}=\frac{\hbar^{2}}{2 m} \cdot k_{n}^{2}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \cdot n^{2}
$$

The stationary states are orthonormal:

$$
\int_{x} d x \psi_{m}^{*} \psi_{n}=\delta_{m, n}
$$

Where the Kronecker Delta is defined:

$$
\delta_{m, n}= \begin{cases}0 & m \neq n \\ 1 & m=n\end{cases}
$$

Algebraic Harmonic Oscillator Solution

Potential for the harmonic oscillator:

$$
V(x)=\frac{m \omega^{2}}{2} x^{2}
$$

The SEQ for the harmonic oscillator is:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+\frac{m \omega^{2} x^{2}}{2} \Psi=E \Psi
$$

Define "raising," "lowering" operators:

$$
a_{ \pm}=(\mp i p+m \omega x) / \sqrt{2 \hbar m \omega}
$$

Position and momentum operators are:
$x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{+}+a_{-}\right) ; p=i \sqrt{\frac{\hbar m \omega}{2}}\left(a_{+}-a_{-}\right)$
With substitution, canonical commutation $[x, p]=i \hbar$, and $\left[a_{-}, a_{+}\right]=1$:

$$
H=\hbar \omega\left(a_{+} a_{-}+1 / 2\right)
$$

The operator eigenvalue problem is:
$H\left(a_{ \pm} \psi_{n}\right)=(E \pm \hbar \omega) a_{ \pm} \psi_{n} ; E_{n}=(2 n+1) \hbar \omega / 2$
Assuming there is a minimum state where $a_{-} \psi_{0}=0$, and solving the ODE:
$\psi_{0}=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega}{2 \hbar} x^{2}\right) ; E_{0}=\frac{\hbar \omega}{2}$
Raising and lowering eigenfunctions while maintaining normalization:
$\frac{a_{+}}{\sqrt{n+1}} \cdot \psi_{n}=\psi_{n+1} ; \quad \frac{a_{+}}{\sqrt{n}} \cdot \psi_{n}=\psi_{n-1}$
The normalized n-th eigenfunction is:

$$
\psi_{n}=\frac{\left(a_{+}\right)^{n}}{\sqrt{n!}} \psi_{0}
$$

The eigenfunctions of the harmonic oscillator are orthonormal:

$$
\int_{x} d x \psi_{m}^{*} \psi_{n}=\delta_{m, n}
$$

Analytic Harmonic Oscillator Solution

The SEQ for the harmonic oscillator is:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+\frac{m \omega^{2} x^{2}}{2} \Psi=E \Psi
$$

With $\xi=\sqrt{m \omega / \hbar} x$, and $K=2 E / \hbar \omega$:

$$
\frac{d^{2} \Psi}{d \xi^{2}}=\left(\xi^{2}-K\right) \Psi
$$

For ξ large $\Psi=A \exp \left(-\xi^{2} / 2\right)$, guess:

$$
\Psi(\xi)=h(\xi) \exp \left(-\xi^{2} / 2\right)
$$

Now, to solve the ODE analytically:

- Plug in the ansatz to the ODE
- Algebraically simplify if possible
- Guess power series solution for h
- Plug in the power series to ODE
- Unify the exponent of the powers
- Equate to zero/eliminate powers
- Solve for the recursion relation

The recursion relation is:

$$
a_{j+2}=\frac{2 j+1-K}{(j+1)(j+2)} a_{j}
$$

These solutions are normalizable iff:
$K=2 n+1 \Longrightarrow E_{n}=(n+1 / 2) \hbar \omega$
With constants a_{0} and a_{1} to normalize: $\psi_{n}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \frac{H_{n}(\xi)}{\sqrt{2^{n} n!}} \exp \left(-\xi^{2} / 2\right)$
The first few Hermite Polynomials are:
$H_{0}=1$

$$
H_{1}=2 \xi
$$

$H_{2}=4 \xi^{2}-2$
$H_{3}=8 \xi^{3}-12 \xi$
$H_{4}=16 \xi^{4}-48 \xi^{2}+12 \quad H_{5}=32 \xi^{5}-160 \xi^{3}+120 \xi^{2}$

Free Particle

For potential $V(x)=0, k=\sqrt{2 m E} / \hbar$:
$\Psi(x, 0)=A \exp (i k x)+B \exp (-i k x)$
Let $k<0$ be left, and $0<k$ be right:
$\Psi_{k}(x, t)=A \exp \left(i\left(k x-\hbar k^{2} t / 2 m\right)\right)$
Which, using a linear superposition is:

$$
\Psi(x, t)=\sum_{k} \Psi_{k}(x, t)
$$

Using the De Broglie Hypothesis:
$p=h / \lambda$ and $k=2 \pi / \lambda \Longrightarrow p=\hbar k$
If given $\Psi(x, 0)$, then to find $\Psi(x, t)$:

$$
\begin{aligned}
\Phi(k) & =\frac{1}{\sqrt{2 \pi}} \int_{x} d x \Psi(x, 0) e^{-i k x} \\
\Psi(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{k} d k \Phi(k) e^{i\left(k x-\hbar k^{2} t / 2 m\right)}
\end{aligned}
$$

Plancherel's theorem is:
$f(x)=\frac{1}{\sqrt{2 \pi}} \int_{k}^{d k F(k) e^{i k x}} \Longleftrightarrow F(k)=\frac{1}{\sqrt{2 \pi}} \int_{x} d x f(x) e^{-i k x}$
For any wave packet, ex. $\omega=\hbar k^{2} / 2 m$:

$$
v_{\text {phase }}=\frac{\omega}{k} ; \quad v_{\text {group }}=\frac{d \omega}{d k}
$$

Delta Function Potential

For $E<V(\pm \infty)$ a state is bound to a region, and for $E>V(\pm \infty)$ a state is not bound. Letting $V(\pm \infty)=0$, then: $\left\{\begin{array}{l}\text { bound: } E<0 \Rightarrow \Psi=\sum_{n} \ldots \Rightarrow \text { normalizable } \\ \text { scatter: } E>0 \Rightarrow \Psi=\int_{k} d k \ldots \text { unnormalizable }\end{array}\right.$
The "delta function" is defined so that:

$$
\int_{x} d x \delta(x-a) f(x)=f(a)
$$

Integrating the Schrödinger Equation:

$$
\Delta \Psi^{\prime}=-2 m \alpha \psi(0) / \hbar^{2}
$$

If $V(x)=-\alpha \delta(x)$, and $E<0$ then:

- Write Schrödinger Equation
- Use an exponential ansatz
- Use the continuity of Ψ
- Use (dis)-continuity of Ψ^{\prime}
- Normalization for Ψ
- Solve for E from ansatz
$E=-\frac{m \alpha^{2}}{2 \hbar^{2}} ; \quad \psi(x)=\frac{\sqrt{m \alpha}}{\hbar} e^{-m \alpha|x| / \hbar^{2}}$ If $V(x)=-\alpha \delta(x)$, and $E>0$ then:
- Follow steps as above ...
- Normalization for $\Psi \Longrightarrow$ ©
$\psi_{-}=A e^{i k x}+B e^{-i k x} ; \psi_{+}=F e^{i k x}+G e^{-i k x}$ The "normalization" coefficients are given by the experimental set up, and not by any constraints of the potential.
- Does wave originate left or right?
- What amplitude of incident?
- What amplitude of reflected?
- What amplitude of transmitted? From conditions on Ψ and Ψ^{\prime}, one finds $\xi^{\text {reflection and transmission coefficients: }}$ $R=\|$ reflected $\left\|^{2} /\right\|$ in $\|^{2}=\left(1+\left(2 \hbar^{2} E / m \alpha^{2}\right)\right)^{-1}$ $T=\|$ transmit $\left\|\left\|^{2} /\right\| \text { in }\right\|^{2}=\left(1+\left(m \alpha^{2} / 2 \hbar^{2} E\right)\right)^{-1}$
Where, with conservation, $R+T=1$.
Tunneling is transmission if $E<V_{\text {max }}$.

Finite Square Well

$V(x)=-V_{0}$ for $-a<x<a$, else $V(x)=0$. Now, consider the bound state where $-V_{0}<E<0$, and $l \equiv \sqrt{2 m\left(E+V_{0}\right) / \hbar^{2}}$:
$\psi(x)= \begin{cases}F \exp (+k x) & x<-a \\ D \cos \text { or } \sin (l x) & -a<x<a \\ F \exp (-k x) & a<x\end{cases}$
Use Ψ and Ψ^{\prime} to find k, graphically via transcendental equation, and thence E. Within limits, the solutions behave as:

- Wide deep: infinite square well truncated and translated by $-V_{0}$
- Wide shallow: free particle
- Narrow deep: delta function
- Narrow shallow: one bound state

Finite Square Well (cont)

For scattering states, $E>0$, and:
$\frac{1}{T}=\frac{1}{1-\sigma_{\mathrm{tot}}}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}(2 a l)$
At some energies the transmission is 1 .
This is the Ramsauer-Townsend effect.

Hilbert Space

Everything you can know for a system is stored in a "state ket," or, vector $|v\rangle$. Operators, or "observables" are "linear transformations," or as matrices that extract information about the system.
The "Hilbert Space" is the vector space of "square-integrable" wave functions.
The inner product of two functions is:

$$
\langle f \mid g\rangle \equiv \int_{a}^{b} d x f^{*}(x) g(x)
$$

If f and g live in Hilbert Space, then the inner product will be bounded by the Schwartz ineq $\langle f \mid g\rangle \leq \sqrt{\langle f \mid f\rangle\langle g \mid g\rangle}$

- Normalized: $\langle f \mid f\rangle=1$
- Orthogonal: $\langle f \mid g\rangle=0$
- Orthonormal: $\langle f \mid g\rangle=0,\langle f \mid f\rangle=1$
- Complete: $\quad g(x)=\sum_{n} c_{n} f_{n}(x)$
- Complete orthon.: $c_{n}=\left\langle f_{n} \mid f\right\rangle$

Inner product, or "bracket" of $|\alpha\rangle,|\beta\rangle$:
$\langle\alpha \mid \beta\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\ldots a_{n}^{*} b_{n}$

Observables

Note that operators act on kets from the left and act on bras from the right.
Measurements observe real values and thence expect real expecation valuesobservables are Hermitian Operators: $\langle Q\rangle=\langle\Psi \mid Q \Psi\rangle=\langle\Psi Q \mid \Psi\rangle=\langle\Psi| Q|\Psi\rangle$ Hermitian Conjugate, or adjoint is Q^{\dagger} : $\langle f \mid Q g\rangle=\left\langle f Q^{\dagger} \mid g\right\rangle$
Determinate states are the values that you keep measuring if you repeatedly measure observable system properties.
This determinacy means $\sigma(Q)=0$, or:

$$
\begin{aligned}
\sigma(Q) & =\sqrt{\left\langle(\boldsymbol{Q}-\langle Q\rangle \mathbf{1})^{2}\right\rangle} \\
& =\sqrt{\langle\Psi|(\boldsymbol{Q}-q \mathbf{1})^{2}|\Psi\rangle} \\
& \Longrightarrow \boldsymbol{Q}-q \mathbf{1}=\mathbf{0}
\end{aligned}
$$

Which is precisely the condition for q to be an eigenvalue of the operator Q.

- "The collection of all eigenvalues of an operator is its spectrum."
- If two kets share an eigenvalue, that eigenvalue and the spectrum are said to be "degenerate."

Hermitian Operator Eigenfunctions

Generalizing δ-function observations: discrete \Longleftrightarrow normalizable \Longleftrightarrow realizable continuous \Leftrightarrow un-normalizable \Leftrightarrow un-realizable

Hermitian operator eigenvalues are real, and their eigenvectors are orthogonal, and in addition, they are a complete set.

Statistical Interpretation

Measurements of a particle in state Ψ by observable Q yields an eigenvalue q_{n}, where the probability of observing q_{n} is $\left|c_{n}\right|^{2}$ for discrete $c_{n}=\left\langle f_{n} \mid \Psi\right\rangle$, or $|c(x)|^{2} d x$ for continuous $c(x)=\left\langle f_{x} \mid \Psi\right\rangle$.

Uncertainty Principle

The generalized uncertainty principle for non-commuting observables A, B :

$$
\sigma(A)^{2} \sigma(B)^{2} \geq\left(\frac{1}{2 i}\langle[A, B]\rangle\right)^{2}
$$

This is found by writing the standard deviations, comparing the imaginary part of the Schwarz Inequality, expanding, and writing as a commutator.
"Measurement collapses the wave function to a narrow spike, which necessarily carries a broad range of momenta"
The minimum-uncertainty wave packet: $\Psi(x)=A \exp \left(-a(x-\langle x\rangle)^{2}\right) \exp (i\langle p\rangle x / \hbar)$ Using the Schrödinger Eq., it is found:

$$
\frac{d}{d t}\langle Q\rangle=\frac{i}{\hbar}\langle[A, B]\rangle+\left\langle\frac{\partial Q}{\partial t}\right\rangle
$$

Substituting H, Q in the generalized uncertainty relation, and then letting $\Delta E \equiv \sigma(H)$, with $\Delta t \equiv \sigma(Q) /|d\langle Q\rangle / d t|:$ $\sigma(H) \sigma(Q) \geq \frac{\hbar}{2}\left|\frac{d\langle Q\rangle}{d t}\right| \Longrightarrow \Delta E \Delta t \geq \frac{\hbar}{2}$

Vectors and Operators

Operators act on vectors as $A|\alpha\rangle=|\beta\rangle$.
Coefficients are given as $c_{n}=\langle n \mid \Psi(t)\rangle$.
In general vectors are $|\Psi(t)\rangle=\sum c_{n}\left|e_{n}\right\rangle$.
Matrix elements are $\left\langle e_{m}\right| A\left|e_{n}\right\rangle=A_{m n}$.
Completeness: $\sum\left|e_{n}\right\rangle\left\langle e_{n}\right|=\mathbf{1}=\int\left|e_{z}\right\rangle\left\langle e_{z}\right|$.
$\mathbf{1}=\sum|n\rangle\langle n|=\int d p|p\rangle\langle p|=\int d x|x\rangle\langle x|$
Consider the two state system:
$H=\left(\begin{array}{ll}h & g \\ g & h\end{array}\right) \Rightarrow\left|\begin{array}{cc}h-E & g \\ g & h-E\end{array}\right|=0 \Rightarrow E_{ \pm}$
$\left(\begin{array}{cc}h-E_{ \pm} & g \\ g & h-E_{ \pm}\end{array}\right)\binom{a_{ \pm}}{b_{ \pm}}=\binom{0}{0} \Rightarrow$ normalize

INTENTIONALLY LEFT BLANK
INTENTIONALLY LEFT BLANK

