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ONE SENTENCE SUMMARY

Upon measurement, the wave function
of a particle assumes an eigenfunction
of that measurement operator, and not
all measurement operators have the
same eigenfunctions.

CHAPTER 1

Solution of the Schrodinger Equation

determines the future system behavior:
) h@\ll n? 0%V
b —

ot 2m 02 + V(@)Y

The probability of a particle in (a, b):
b
Py = [ d 190"

The probability of a particle anywhere:
P(space) = /dm ||\I/(J,‘,t)“2 =1
Not all wave functions correspond to a
particle (¥(z) =0 or lim ¥(x) # 0),

Tr—r00

otherwise, they may be normalized
once 80 Prgpace) = 1 holds for all time.

The expectation value of f(x):

ww:/mwmwwwm>

The standard deviation of f(z):
a(f(2)) = V{(f(@))?) = {f(x))?
The expectation value of position:

(z) = / do U (2, 1) [2] U (x, 1)

The expectation value of momentum:

(p)zmdfi?z/xdx w*{—mgg}m

These are useful because: “all classical
dynamical variables can be expressed
in terms of position and momentum.”

The de Broglie formula relates:

_ 2mh

DY
Now: “the more precisely determined a
particle’s position is, the less precisely
determined a particle’s momentum is.”
Which is the Uncertainty Principle:

h
o@)o(p) > 3

CHAPTER 2

If V(x,t) is independent of ¢ then:

U(z,t) = P(x)e(t)
Which may be written as two ODEs,
with solving and H = p?/2m + V (z):

dy iE iEt
- = p = w(t)=exp( h)

dt h
2 72

_d +Vy=Ey — Hy=Ey
2m dx?

Properties of separable solutions, ¥ (x):

e the probability density is time in-

dependent for “stationary states”

e wave function is a linear combi-

nation of the separable solutions

e definite total energy for solutions

Assuming completeness of {1, }:

V(z,t) = Z Cntn, €Xp <Z‘§t>

Where the projection operator finds:
on= [ d s

The probability of an eigenfunction,
and probability of all eigenfunctions:

P(E,) = lcol> and ) [en* =1

Hamiltonian’s eigenvalues are energies:

(H) :/dgc U*[H|Y :E/dx |¥|? =F
T T

Hamiltonian’s expectation value is con-

tinuous, but the energies are discrete:

(H) =) |en[’E, and o(H)=0

INFINITE SQUARE WELL

Potential for the infinite square well:

oo <0
Viz)=420 0<z<a
0 a<zx
The SEQ is then, with k =+/2mE/h?:
B 20U >
T kg 4
2m dx? v = dx? k

The general solution to this ODE is:
Y(x) = Asin(k,x) + B cos(k,x)
Normalizing and considering boundary

values, A = +/2/a and k,, = nm/a:

0 <0
U(x) =< Asin(kp,z) 0<z<a
0 a<T

INFINITE SQUARE WELL
(CONTINUED)

Note, k is the free space wave vector:

2m p?
=i p= e 2

Solving the permitted momenta for E:
»; _ no
k2 =

om  2m " 2ma?

The stationary states are orthonormal:

[ o vin =
x
Where the Kronecker Delta is defined:

5mn{0 m#n

’ 1 m=n

ALGEBRAIC HARMONIC
OSCILLATOR SOLUTION

Potential for the harmonic oscillator:
2

Viz) = m;u z?
The SEQ for the harmonic oscillator is:
h? d?V mw?z?
-+ ———VU =FV
2m dz? * 2

Define “raising,” “lowering” operators:
at = (Fip + mwz) /V2hmw

Position and momentum operators are:

x=1/ h (a++a-); —M/hmw(a —a_)
“V ome G P 2 o

With substitution, canonical commu-
tation [z,p] = ik, and [a—,ay] = 1:
H = hw(aya_ +1/2)

The operator eigenvalue problem is:
H(a+¥n)=(E+hw)a+tpn; En=2n+1)hw/2

Assuming there is a minimum state
where a_1y = 0, and solving the ODE:

mw\L/4 mw o hw

= (= ) By ==
Yo (wh) eXp( th)’ 0=
Raising and lowering eigenfunctions

while maintaining normalization:

ay a4
1/% = wn+1; 77/}n = wn—l

Vn+1 vn

The normalized n-th eigenfunction is:

_ (aq)"
"/}n - m ¢0

The eigenfunctions of the harmonic os-
cillator are orthonormal:

/dx Uy = Omon
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ANALYTIC HARMONIC
OSCILLATOR SOLUTION

The SEQ for the harmonic oscillator is:

R dPU mw?a?
vz U= BV
2m dx? + 2
With € = \/mw/hz, and K = 2E/hw:
2v

For ¢ large W = Aexp(—£2/2), guess:

W(€) = h(&) exp(—€2/2)
Now, to solve the ODE analytically:
Plug in the ansatz to the ODE
Algebraically simplify if possible
Guess power series solution for A
Plug in the power series to ODE
Unify the exponent of the powers
Equate to zero/eliminate powers
Solve for the recursion relation
The recursion relation is:

2j+1-K

G+DG+2)"

These solutions are normalizable iff:
K=2n+1 = E,=(n+1/2)hw
With constants ag and a; to normalize:

mw\/4 H,,
onte) = (22)" D29 exp-g22)
The first few Hermite Polynomials are:
Ho=1 Hy =2¢
Hy = 4¢2 H3 =8¢°

Aj42 =

—12¢

DELTA FUNCTION POTENTIAL

For E < V(£00) a state is bound to a
region, and for £ > V(+o00) a state is
not bound. Letting V(+o0) = 0, then:
bound: E<0=>¥=3" ..
scatter: E>0 =V =/, dk ...

The “delta function” is defined so that:

/dwém—a f(z) = f(a)

Integrating the Schrodinger Equation:
AV = —2manp(0) />
If V(z) = —ad(z), and E < 0 then:
e Write Schrédinger Equation
e Use an exponential ansatz
e Use the continuity of ¥
e Use (dis)-continuity of ¥’
e Normalization for ¥
e Solve for E from ansatz

= normalizable
= unnormalizable

ma? vma 2
_ . _ V" —malz|/k
E TR Y(x) P
If V(z) = —ad(x), and E > 0 then:

e Follow steps as above ...

e Normalization for ¥ — ©
w_:Aeikr_FBe—ikm; w+:F6ikz+Ge—ikz
The “normalization” coefficients are
given by the experimental set up, and
not by any constraints of the potential.

e Does wave originate left or right?

e What amplitude of incident?

e What amplitude of reflected?

e What amplitude of transmitted?
From conditions on ¥ and ¥’, one finds

Hy = 1654 48{ 112 Hy = 3255 16053+120£reﬂect10n and transmission coefﬁc1ents

FREE PARTICLE

For potential V(z) =0, k = V2mE/h:
U(z,0) = Aexp(ikz) + Bexp(—ikx)

Let k < 0 be left, and 0 < k be right:
Uy (x,t) = Aexp( (kx — hk*t/2m))

Which, using a linear superposition is:

U(x,t) = Zk Uy (z,t)

Using the De Broglie Hypothesis:
p=h/Xand k =2r/A\ = p=hk
If given ¥(z,0), then to find ¥(x,t):

O(k) = \/%77 / dx U(z,0)e ke
U(z,t) r/dk ok

Plancherel’s theorem is:

i(kz—hk2t/2m)

f(z):\/é/];dk F(k)eikT@F(k):J%/;dz Fla)ye ik
For any wave packet, ex. w = hk?/2m:
w dw
Uphase = Ey Vgroup = %

R=|reflected|*/|in|* = (14+(2h* E/ma?)) !

T = |transmit|?/|in]* = (1+(ma? /2° E)) ™"
Where, with conservation, R+ 1T = 1.
Tunneling is transmission if E < Vi ax.

FINITE SQUARE WELL

V(z)=—V, for —a<z<a, else V(x)=0.
Now, consider the bound state where

—Vo<E<O0, and I=/2m(FE + V) /h?:
F exp(+kx) r<—a

(x) = ¢ Dcos or sin(lx) —a<z<a
F exp(—kzx) a<x

Use ¥ and ¥’ to find k, graphically via
transcendental equation, and thence F.
Within limits, the solutions behave as:
e Wide deep: infinite square well
truncated and translated by —Vj
e Wide shallow: free particle
e Narrow deep: delta function
e Narrow shallow: one bound state

FINITE SQUARE WELL (CONT)
For scattering states, £ >0, and:
1 1

sin?(2al)

1%
T 1—0wr 4E(E+V0)
At some energies the transmission is 1.
This is the Ramsauer-Townsend effect.

HILBERT SPACE

Everything you can know for a system
is stored in a “state ket,” or, vector |v).
Operators, or “observables” are “linear
transformations,” or as matrices that
extract information about the system.

The “Hilbert Space” is the vector space
of “square-integrable” wave functions.

The inner producl‘)c of two functions is:
(o) = [ da fia)gla)

If f and g live i?l Hilbert Space, then
the inner product will be bounded by

the Schwartz ineq (f|g) < /{f]f){glg)
e Normalized: (f|f)=1
e Orthogonal: (f|g)=0
e Orthonormal: (f|g)=0, (f|f)=1
e Complete: g(x) =", cnfn(x)
e Complete orthon.: ={fulf)

Inner product, or “bracket” of |a), |5):
(a|B) = aiby + ajbs +...a%b,

OBSERVABLES

Note that operators act on kets from
the left and act on bras from the right.

Measurements observe real values and
thence expect real expecation values-
observables are Hermitian Operators:

(Q) = (¥|QY) = (¥Q[¥) = (V|Q|¥)
Hermitian Conjugate, or adjoint is Q*:
(f1Qg) = (fQl9)

Determinate states are the values that
you keep measuring if you repeatedly
measure observable system properties.
This determinacy means o(Q) = 0, or:

o(Q) = v((Q — (@)1)%)
= V(¥(@Q - q1)? V)

— Q—-q1=0
Which is precisely the condition for ¢
to be an eigenvalue of the operator Q.

e “The collection of all eigenvalues
of an operator is its spectrum.”

o If two kets share an eigenvalue,
that eigenvalue and the spectrum
are said to be “degenerate.”
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HERMITIAN OPERATOR
EIGENFUNCTIONS

Generalizing d-function observations:
discrete <= normalizable <= realizable

continuous < un-normalizable < un-realizable

Hermitian operator eigenvalues are real,
and their eigenvectors are orthogonal,
and in addition, they are a complete set.

STATISTICAL INTERPRETATION

Measurements of a particle in state ¥
by observable @ yields an eigenvalue
¢n, where the probability of observing
qn is |e,|? for discrete ¢, = (f,|¥), or
le(z)|?dx for continuous c(z) = (f,|V).

UNCERTAINTY PRINCIPLE

The generalized uncertainty principle
for non-commuting observables A, B:

o(A)%(B)? > (212 ([A, B]>)2

This is found by writing the standard
deviations, comparing the imaginary
part of the Schwarz Inequality, expand-
ing, and writing as a commutator.

“Measurement collapses the wave func-
tion to a narrow spike, which necessar-
ily carries a broad range of momenta”

The minimum-uncertainty wave packet:
U(z)=Aexp(—a(z—(x))?) exp(i(p)z/h)
Using the Schrodinger Eq., it is found:

d i oQ

il — “[A.B =

S =+ (4B + (5
Substituting H, (@ in the generalized
uncertainty relation, and then letting
AE=0(H), with At=0(Q)/|d(Q)/dt|:

h|d(Q) h

VECTORS AND OPERATORS

Operators act on vectors as A|a) = |5).
Coefficients are given as ¢, = (n|¥(¢)).
In general vectors are |¥(¢))=>_ cplen).
Matrix elements are {e,,|A|e,) = Apn.

Completeness:Y_|e, )en| =1=[le.)e.|.

1= )l =/dp 12} o] =/dx 2z

Consider the two state system:

_(h g h—E g |_
H<g h>:>‘ p h_E‘OéEi

h—Ei g a4\ 0 .
( p h_Ei>(bi>—<0>:>normahze
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