Physics 112 at UCLA \diamond Formula Sheet (1 of 3)

MATH THAT COMES IN HANDY

Taylor Expansion is often quite useful:

$$f(x) = \sum_{n=0}^{\infty} = \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Stirling's Approximation is essential:

$$\begin{aligned} \ln(n!) &\approx n \ln(n) - n + \ln(2\pi n)/2 \\ &\frac{d}{dn} \ln(n!) \approx \ln(n) + \frac{1}{2n} \end{aligned}$$

Integration by Parts is foundational:

$$\int u \, dv = uv - \int v \, du$$

The Chain Rule is good to simplify: $\partial U \quad \partial U \quad \partial x_1 \quad \partial U \quad \partial x_2$

 $\frac{\partial U}{\partial t} = \frac{\partial U}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial U}{\partial x_2} \frac{\partial x_2}{\partial t} + \dots$

Geometric Series helps now and then: ∞

$$\sum_{n=0} ar^n = \frac{a}{1-r} \quad (r<1)$$

Binomial Expansion helps sometimes: N

$$(x+y)^{N} = \sum_{t=0}^{N} \frac{N!}{(N-t)! t!} x^{N-t} y^{t}$$

HYPERBOLIC IDENTITIES

Hyperbolic functions are defined by: $\cosh(x) = \frac{e^x + e^{-x}}{2}; \sinh(x) = \frac{e^x - e^{-x}}{2}$ These identities then follow naturally: $\sinh(2x) = 2\sinh(x)\cosh(x)$ $\cosh(2x) = \cosh^2(x) + \sinh^2(x)$ $\cosh^2(x) = 1 + \sinh^2(x)$ $\tanh^2(x) = 1 - \operatorname{sech}^2(x)$ $\coth^2(x) = 1 + \operatorname{csch}^2(x)$

INTEGRALS OF INTEREST

$$\int_{0}^{\infty} dx \ e^{-\alpha^{2}x^{2}} = \frac{1}{\alpha} \frac{\sqrt{\pi}}{2}$$
$$\int_{0}^{\infty} dx \ x^{2} \ln(1 - e^{-x}) = -\frac{\pi^{4}}{45}$$
$$\int_{0}^{\infty} dx \ \frac{x^{2}e^{x}}{(e^{x} - 1)^{2}} = \frac{\pi^{2}}{3}$$
$$\int_{0}^{\infty} dx \ \frac{x}{e^{x} - 1} = \frac{\pi^{2}}{6}$$
$$\int_{0}^{\infty} dx \ \frac{x^{2}}{e^{x} - 1} = 2.404$$
$$\int_{0}^{\infty} dx \ \frac{x^{3}}{e^{x} - 1} = \frac{\pi^{4}}{15}$$
$$\int_{0}^{\infty} dx \ \frac{x^{1/2}}{e^{x} - 1} = 2.315$$

Constants

These constants are fundamental:

$$k_B = 1.380649 \times 10^{-23} \text{ J/K}$$

= 8.617330 × 10⁻⁵ eV/K
$$\hbar = 1.054572 \times 10^{-34} \text{ J} \cdot \text{s}$$

= 6.582120 × 10⁻¹⁶ eV · s
$$c = 2.997925 \times 10^8 \text{ m/s}$$

PROBABILITY

For the multiplicity or accessible states g(q) that realize value q, probability is:

$$P(q) \equiv \frac{g(q)}{\sum_{i} g(q_i)} \implies \sum_{i} P(q_i) = 1$$

The "expectation value" (average) is:

$$\langle q \rangle \equiv \sum\nolimits_{i} q_{i} P(q_{i})$$

USEFUL PHYSICAL TERMS

Entropy is defined as $\sigma \equiv \ln(g)$, and $S = k_B \sigma$. Meanwhile, temperature is:

$$\frac{1}{\tau} \equiv \frac{\partial \sigma}{\partial U}, \quad \text{and } \tau = k_B T$$

The inverse of temperature is "thermodynamic beta", $\beta = 1/\tau$. The number density is number per volume, or N/V. The energy is the expectation value:

$$U \equiv \langle \epsilon \rangle$$

From energy, the heat capacity is: $\partial \sigma = \partial U$

$$C \equiv \tau \, \frac{\partial \sigma}{\partial \tau} \equiv \frac{\partial U}{\partial \tau}$$

Pressure is defined by the expansion:

$$\epsilon(V - \Delta V) = \epsilon(V) - \frac{d\epsilon}{dV}\Delta V + \dots$$

With rearrangement, this yields:

$$p = -\frac{\partial U}{\partial V} = \tau \left(\frac{\partial \sigma}{\partial V}\right)$$

Work is defined along a path:

$$W = \int_{V_1}^{V_2} p \ dV$$

PARTITION FUNCTION

The partition function summarizes the thermodynamic state of a system when paired with temperature:

$$Z = \sum_{s} \exp\left(-\frac{\epsilon_s}{\tau}\right)$$

Probabilities are given by the relation:

$$P(\epsilon_s) = \frac{\exp(-\frac{\epsilon_s}{\tau})}{Z}$$

Applying Z to Energy

From algebra, the energy is found as:

$$U = \tau^2 \frac{\partial \ln(Z)}{\partial \tau} = \tau^2 \frac{1}{Z} \frac{\partial Z}{\partial \tau}$$

Recalling thermodynamic beta, find:

$$\frac{\partial}{\partial \tau} = -\beta^2 \frac{\partial}{\partial \beta}, \quad U = -\frac{\partial \ln(Z)}{\partial \beta}$$

From which the heat capacity follows:

$$C_V = \left(\frac{\partial U}{\partial \tau}\right)_V = \beta^2 \frac{\partial^2}{\partial \beta^2} \ln(Z)$$

HELMHOLTZ FREE ENERGY

One thermodynamic generating function is the Helmholtz Free Energy:

$$F \equiv U - \tau \sigma = -\tau \ln(Z)$$

Entropy and pressure are its partials:

$$\sigma = -\frac{\partial F}{\partial \tau}, \qquad p = -\frac{\partial F}{\partial V}$$

CHEMICAL POTENTIAL

Chemical potential describes the tendency of a system to transport particles. Its many definitions include:

$$\mu \equiv \left(\frac{\partial F}{\partial N}\right)_{\tau,V} \equiv \left(\frac{\partial F}{\partial U}\right)_{\tau,V} - \tau \left(\frac{\partial \sigma}{\partial N}\right)_{\tau,V}$$
$$= \left(\frac{\partial U}{\partial N}\right)_{\sigma,V} = -\tau \left(\frac{\partial \sigma}{\partial N}\right)_{U,V}$$

With an external potential, μ becomes: $\mu = \mu_{int} + \mu_{ext}$

 μ provides a way to quantify effective concentration, or activity of species i:

 $\lambda_i \equiv \exp(\mu_i / \tau)$

Equilibrium

At equilibrium, σ is maximized, F is minimized, and thermodynamic quantities are uniform, $\tau_1 = \tau_2$, and $\mu_1 = \mu_2$. Relations like this are satisfied:

$$\left(\frac{\partial F_1}{\partial N_1}\right)_{\tau} = \left(\frac{\partial F_2}{\partial N_2}\right)_{\tau}$$

THERMODYNAMIC IDENTITIES

$$dF = \frac{\partial F}{\partial \tau} d\tau + \frac{\partial F}{\partial V} dV + \frac{\partial F}{\partial N} dN$$

$$\implies dF = -\sigma \, d\tau - p \, dV + \mu \, dN$$

$$d\sigma = \frac{\partial \sigma}{\partial U} dU + \frac{\partial \sigma}{\partial V} dV + \frac{\partial \sigma}{\partial N} dN$$

$$\implies dU = +\tau \, d\sigma - p \, dV + \mu \, dN$$

Spenser Talkington \triangleleft spenser.science \triangleright Spring 2018

GIBBS SUM

The Gibbs Sum, or Grand Canonical Ensemble, is an extension of the partition function, or Canonical Ensemble, by the inclusion of terms such as the chemical potential.

$$z = \sum \exp((N\mu - \epsilon_s)/\tau)$$

BOLTZMANN & GIBBS FACTOR

Boltzmann factor between two states: $\frac{P(\epsilon_1)}{P(\epsilon_2)} = \frac{\exp(-\epsilon_1/\tau)}{\exp(-\epsilon_2/\tau)}$ Gibbs factor between two states: $\frac{P(N, \epsilon_1)}{P(N, \epsilon_2)} = \frac{\exp((N\mu - \epsilon_1)/\tau)}{\exp((N\mu - \epsilon_2)/\tau)}$

DISTRIBUTION FUNCTIONS

Define the distribution function as: $f(\epsilon,\mu,\tau)\equiv \langle N(\epsilon,\mu,\tau)\rangle$

Fermi-Dirac distribution function:

$$f(\epsilon, \mu, \tau) = \frac{1}{\exp((\epsilon - \mu)/\tau) + 1}$$

Bose-Einstein distribution function:

 $f(\epsilon, \mu, \tau) = \frac{1}{\exp((\epsilon - \mu)/\tau) - 1}$ Classical distribution function:

$$f(\epsilon, \mu, \tau) = \frac{1}{\exp((\epsilon - \mu)/\tau)}$$

EXPECTATION VALUES

Expectation values can be found from the density of states and dist. function:

$$\begin{aligned} \langle q \rangle &= \sum_{i} f(\epsilon_{i}, \tau, \mu) \, q_{i} \\ &= \int d\epsilon \, D(\epsilon) f(\epsilon, \tau, \mu) \, q(\epsilon) \end{aligned}$$

FERMI ENERGY

By the exclusion principle, fermions always have a finite chemical potential:

$$\mu(\tau = 0) = \epsilon_F$$

From the energy, a velocity is defined:
 $\epsilon_F = mv_F^2/2$

$$\epsilon_F = \frac{\hbar^2}{2M} \left(\frac{3\pi^2 N}{V}\right)^{2/3} \equiv \tau_F$$

For a spherical Fermi surface, find that: $N = 2 \cdot \frac{1}{8} \cdot \frac{4\pi}{3} \cdot n_F^3 = \frac{\pi}{3} n_F^3 \Rightarrow n_F = \left(\frac{3N}{\pi}\right)^{1/3}$ Where the internal energy is found as: $U_0 = 2 \cdot \frac{1}{8} \cdot 4\pi \int_0^{n_F} dn \ n^2 \epsilon_n = \frac{3}{5} N \epsilon_F$

QUANTUM CONCENTRATION

Above the quantum concentration, n_Q , quantum effects become significant:

$$n_Q = \left(\frac{M\tau}{2\pi\hbar^2}\right)^{3/2} \implies \tau_0 = \frac{2\pi\hbar^2}{M}n^{2/3}$$

For an ideal gas, $\mu_{\rm int}$ becomes:
 $\mu_{\rm int} = \tau \ln(n/n_Q)$

EX. BAROMETRIC PRESSURE

In a gravitational potential, we have: $\mu = \tau \ln(n/n_Q) + Mgh$ Equating at two different altitudes: $\tau \ln(n(h)/n_Q) + Mgh = \tau \ln(n(0)/n_Q)$ So we find a relation for concentrations: $n(h) = n(0) \exp(-Mgh/\tau)$

IDEAL GAS

For indistinguishable particles
$$F$$
 is:

$$F = N\tau \left[\ln \left(\frac{N}{Vn_{Q}} \right) - 1 \right]$$

Ideal gas law in thermodynamic and molar units, derived by $P = -\partial F / \partial V$:

$$pV = N\tau \iff PV = nRT$$

The equipartition of energy follows:
 $U = \frac{\text{d.o.f.}}{2}N \cdot \tau$

Heat capacities for monatomic gasses:

$$C_V = \frac{3}{2}N, \qquad C_P = \frac{3}{2}N$$

Bose Gas and Condensate

The density of states for a Bose Gas:

$$D(\epsilon) = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \epsilon^{1/2}$$

In the low temperature limit find that:

$$N = \frac{1}{\exp(-\mu/\tau) - 1} \approx -\frac{\tau}{\mu}$$

The activity is then to first order:

$$\lambda \equiv \exp(\mu/\tau) \approx 1 - \frac{1}{N}$$

The total particle number is given by:

$$N = N_{\text{ground}}(\tau) + N_{\text{excited}}(\tau)$$

These numbers are calculated by:

$$N_{\rm g}(\tau) = \frac{1}{\lambda^{-1} - 1}; \quad N_{\rm e}(\tau) = 2.612 \frac{n_Q}{V}$$

Einstein temperature is $N_{\rm e}(\tau) = N$:
$$\tau_{\rm T} = \frac{2\pi\hbar^2}{2\pi\hbar^2} \left(\frac{N}{N}\right)^{2/3}$$

 $V_E = M \quad (2.612V)$ With some algebra it is shown that:

$$N_{\rm e} \approx N \left(\frac{\tau}{\tau_E}\right)^{3/2}$$

FERMI GAS

The density of states for a Fermi Gas:

$$D(\epsilon) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \epsilon^{1/2}$$

Number is defined as usual:

$$N = \int_0^\infty d\epsilon \ D(\epsilon) f(\epsilon, \tau, \mu)$$

Energy is defined as usual:

$$U = \int_0^\infty d\epsilon \ \epsilon D(\epsilon) f(\epsilon, \tau, \mu)$$

At low temperature find that:

$$N = \int_0^{\epsilon_F} d\epsilon \, D(\epsilon); \quad U_0 = \int_0^{\epsilon_F} d\epsilon \, \epsilon D(\epsilon)$$

Which lead to the expressions:

$$C_V = \frac{\pi^2}{3} D(\epsilon_F) \tau; \qquad p = \frac{2N\epsilon_F}{5V}$$

EX. HEAT CAPACITY OF A FREE ELECTRON GAS

The heat capacity of an electron gas is:

$$C_{\rm el} = \frac{dU}{d\tau} = \int_0^\infty d\epsilon (\epsilon - \epsilon_F) \frac{df}{d\tau} D(\epsilon)$$

Which becomes, with $x \equiv (\epsilon - \epsilon_F)/\tau$:

$$C_{\rm el} = \tau D(\epsilon_F) \int_0^\infty dx \ x^2 \frac{e^x}{(e^x + 1)^2}$$

Which is, and has a density of states:

$$C_{\rm el} = \frac{\pi^2}{3} D(\epsilon_F) \tau, \quad D(\epsilon_F) = \frac{3N}{2\tau_F}$$

Combining these, one finds that:

$$C_{\rm el} = \frac{\pi^2 N \tau}{2\tau_F}$$

EX. DEBYE MODEL

Define the Debye Temperature as the highest temperature a crystal can reach during a normal mode of vibration:

$$T_D \equiv \frac{\hbar v}{k_B} \left(\frac{6\pi^2 N}{V}\right)^{1/3}$$

Integrating over temperatures to T_D , with the dimensionless $x \equiv \pi \hbar v b / L \tau$:

$$U = \sum_{n}^{N} \langle \epsilon_{n} \rangle$$
$$= \frac{3\pi^{2} \hbar v}{2L} \left(\frac{\tau L}{\pi \hbar v}\right)^{4} \int_{0}^{x_{D}} dx \frac{x^{3}}{e^{x} - 1}$$

Which gives the Debye T^3 law at low T:

$$C_V = \frac{12\pi^4 N}{5} \left(\frac{\tau}{k_B T_D}\right)^3$$

Spenser Talkington \triangleleft spenser.science \triangleright Spring 2018

Ex. Plank Law and Stefan-Boltzmann Law

Plank distribution for particles in box with quanta s such that $\epsilon = \langle s \rangle \hbar \omega$:

$$\langle s \rangle = \frac{1}{\exp(\hbar\omega/\tau) - 1}$$

The spectral density at ω is therefore:

$$u(\omega) = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{\exp(\hbar\omega/\tau) - 1}$$

Energy per area, or radiant flux density:

$$J = \frac{\pi^2}{60\hbar^3 c^2} \tau^4 = \frac{\pi^2 k_B^4}{60\hbar^3 c^2} T^4$$

EX. BINARY SPIN SYSTEM

A spin system with $N_{\uparrow} + N_{\downarrow} = N$ has:

$$g(N) = 2^N, \qquad U(s) = -2smB$$

For a given total spin s, the number of accessible states is given by:

$$g(N,s) = \binom{N}{N_{\uparrow}} = \frac{N!}{N_{\uparrow}!N_{\downarrow}!}$$
$$= \frac{N!}{(\frac{1}{2}N+s)!(\frac{1}{2}N-s)!}$$
$$\approx \sqrt{\frac{2}{\pi N}} 2^{N} \exp\left(-\frac{2s^{2}}{N}\right)$$

EX. DISRUPTED SPIN SYSTEM

It is illustrative to consider the entropy of a disrupted spin system. Viz, how sharply entropy peaks about $\delta = 0$:

$$\frac{g_1(N_1, \hat{s}_1 + \delta)g_2(N_2, \hat{s}_2 - \delta)}{\max(g_1g_2)} = \exp\left(-\frac{2\delta^2}{N_1} - \frac{2\delta^2}{N_2}\right)$$

EX. COMBINED SPIN SYSTEM

The entropy of a composite system made of two subsystems is the product. Note that thermodynamic variables are split between the two subsystems:

$$g(N,S) = \sum_{s_1,s_2} g_1(N_1,s_1) g_2(N_2,s_2)$$

=
$$\sum_{U_1} g_1(N_1,U_1) g_2(N_2,U-U_1)$$

EX. SPIN ENTROPY

Spin entropy in zero magnetic field is: $Z_{\text{int}} = (2I+1) \implies \sigma_{\text{int}} = \ln(2I+1)$ The corresponding chemical potential: $\mu = \tau \left(\ln(n/n_{\varphi}) - \ln(2I+1) \right)$ INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK