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Math That Comes in Handy

Taylor Expansion is often quite useful:

f(x) =

∞∑
n=0

=
f (n)(a)

n!
(x− a)n

Stirling’s Approximation is essential:

ln(n!) ≈ n ln(n)− n+ ln(2πn)/2

d

dn
ln(n!) ≈ ln(n) +

1

2n
Integration by Parts is foundational:∫

u dv = uv −
∫
v du

The Chain Rule is good to simplify:
∂U

∂t
=
∂U

∂x1

∂x1
∂t

+
∂U

∂x2

∂x2
∂t

+ ...

Geometric Series helps now and then:
∞∑
n=0

arn =
a

1− r
(r < 1)

Binomial Expansion helps sometimes:

(x+ y)N =

N∑
t=0

N !

(N − t)! t!
xN−tyt

Hyperbolic Identities

Hyperbolic functions are defined by:

cosh(x) =
ex+e−x

2
; sinh(x) =

ex−e−x

2
These identities then follow naturally:

sinh(2x) = 2 sinh(x) cosh(x)

cosh(2x) = cosh2(x) + sinh2(x)

cosh2(x) = 1 + sinh2(x)

tanh2(x) = 1− sech2(x)

coth2(x) = 1 + csch2(x)

Integrals of Interest∫ ∞
0

dx e−α
2x2

=
1

α

√
π

2∫ ∞
0

dx x2 ln(1− e−x) = −π
4

45∫ ∞
0

dx
x2ex

(ex − 1)2
=
π2

3∫ ∞
0

dx
x

ex − 1
=
π2

6∫ ∞
0

dx
x2

ex − 1
= 2.404∫ ∞

0

dx
x3

ex − 1
=
π4

15∫ ∞
0

dx
x1/2

ex − 1
= 2.315

Constants

These constants are fundamental:

kB = 1.380649× 10−23 J/K

= 8.617330× 10−5 eV/K

~ = 1.054572× 10−34 J · s
= 6.582120× 10−16 eV · s

c = 2.997925× 108 m/s

Probability

For the multiplicity or accessible states
g(q) that realize value q, probability is:

P (q) ≡ g(q)∑
i g(qi)

=⇒
∑

i
P (qi) = 1

The “expectation value” (average) is:

〈q〉 ≡
∑

i
qiP (qi)

Useful Physical Terms

Entropy is defined as σ ≡ ln(g), and
S = kBσ. Meanwhile, temperature is:

1

τ
≡ ∂σ

∂U
, and τ = kBT

The inverse of temperature is “thermo-
dynamic beta”, β = 1/τ . The number
density is number per volume, or N/V .
The energy is the expectation value:

U ≡ 〈ε〉
From energy, the heat capacity is:

C ≡ τ ∂σ
∂τ
≡ ∂U

∂τ

Pressure is defined by the expansion:

ε(V −∆V ) = ε(V )− dε

dV
∆V + . . .

With rearrangement, this yields:

p = −∂U
∂V

= τ

(
∂σ

∂V

)
Work is defined along a path:

W =

∫ V2

V1

p dV

Partition Function

The partition function summarizes the
thermodynamic state of a system when
paired with temperature:

Z =
∑

s
exp

(
−εs
τ

)
Probabilities are given by the relation:

P (εs) =
exp(− εsτ )

Z

Applying Z to Energy

From algebra, the energy is found as:

U = τ2
∂ ln(Z)

∂τ
= τ2

1

Z

∂Z

∂τ

Recalling thermodynamic beta, find:
∂

∂τ
= −β2 ∂

∂β
, U = −∂ ln(Z)

∂β

From which the heat capacity follows:

CV =

(
∂U

∂τ

)
V

= β2 ∂
2

∂β2
ln(Z)

Helmholtz Free Energy

One thermodynamic generating func-
tion is the Helmholtz Free Energy:

F ≡ U − τσ = −τ ln(Z)

Entropy and pressure are its partials:

σ = −∂F
∂τ

, p = −∂F
∂V

Chemical Potential

Chemical potential describes the ten-
dency of a system to transport particles.
Its many definitions include:

µ ≡
(
∂F

∂N

)
τ,V

≡
(
∂F

∂U

)
τ,V

− τ
(
∂σ

∂N

)
τ,V

=

(
∂U

∂N

)
σ,V

= −τ
(
∂σ

∂N

)
U,V

With an external potential, µ becomes:
µ = µint + µext

µ provides a way to quantify effective
concentration, or activity of species i:

λi ≡ exp(µi/τ)

Equilibrium

At equilibrium, σ is maximized, F is
minimized, and thermodynamic quan-
tities are uniform, τ1 =τ2, and µ1 =µ2.
Relations like this are satisfied:(

∂F1

∂N1

)
τ

=

(
∂F2

∂N2

)
τ

Thermodynamic Identities

dF =
∂F

∂τ
dτ +

∂F

∂V
dV +

∂F

∂N
dN

=⇒ dF = −σ dτ − p dV + µdN

dσ =
∂σ

∂U
dU +

∂σ

∂V
dV +

∂σ

∂N
dN

=⇒ dU = +τ dσ − p dV + µdN
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Gibbs Sum

The Gibbs Sum, or Grand Canonical
Ensemble, is an extension of the parti-
tion function, or Canonical Ensemble,
by the inclusion of terms such as the
chemical potential.

z =
∑

exp((Nµ− εs)/τ)

Boltzmann & Gibbs Factor

Boltzmann factor between two states:
P (ε1)

P (ε2)
=

exp(−ε1/τ)

exp(−ε2/τ)

Gibbs factor between two states:
P (N, ε1)

P (N, ε2)
=

exp((Nµ− ε1)/τ)

exp((Nµ− ε2)/τ)

Distribution Functions

Define the distribution function as:
f(ε, µ, τ) ≡ 〈N(ε, µ, τ)〉

Fermi-Dirac distribution function:

f(ε, µ, τ) =
1

exp((ε− µ)/τ) + 1

Bose-Einstein distribution function:

f(ε, µ, τ) =
1

exp((ε− µ)/τ)− 1

Classical distribution function:

f(ε, µ, τ) =
1

exp((ε− µ)/τ)

Expectation Values

Expectation values can be found from
the density of states and dist. function:

〈q〉 =
∑

i
f(εi, τ, µ) qi

=

∫
dε D(ε)f(ε, τ, µ) q(ε)

Fermi Energy

By the exclusion principle, fermions al-
ways have a finite chemical potential:

µ(τ = 0) = εF
From the energy, a velocity is defined:

εF = mv2F /2

For spin-half particles, this energy is:

εF =
~2

2M

(
3π2N

V

)2/3

≡ τF

For a spherical Fermi surface, find that:

N=2·1
8
·4π

3
·n3F =

π

3
n3F ⇒ nF =

(
3N

π

)1/3
Where the internal energy is found as:

U0 = 2 · 1

8
· 4π

∫ nF

0

dn n2εn =
3

5
NεF

Quantum Concentration

Above the quantum concentration, nQ,
quantum effects become significant:

nQ =

(
Mτ

2π~2

)3/2

=⇒ τ0 =
2π~2

M
n2/3

For an ideal gas, µint becomes:

µint = τ ln(n/nQ)

Ex. Barometric Pressure

In a gravitational potential, we have:
µ = τ ln(n/n

Q
) +Mgh

Equating at two different altitudes:
τ ln(n(h)/n

Q
) +Mgh = τ ln(n(0)/n

Q
)

So we find a relation for concentrations:
n(h) = n(0) exp(−Mgh/τ)

Ideal Gas

For indistinguishable particles F is:

F = Nτ

[
ln

(
N

V n
Q

)
− 1

]
Ideal gas law in thermodynamic and
molar units, derived by P = −∂F/∂V :

pV = Nτ ⇐⇒ PV = nRT
The equipartition of energy follows:

U =
d.o.f.

2
N · τ

Heat capacities for monatomic gasses:

CV =
3

2
N, CP =

5

2
N

Bose Gas and Condensate

The density of states for a Bose Gas:

D(ε) =
V

4π2

(
2m

~2

)3/2

ε1/2

In the low temperature limit find that:

N =
1

exp(−µ/τ)− 1
≈ − τ

µ

The activity is then to first order:

λ ≡ exp(µ/τ) ≈ 1− 1

N
The total particle number is given by:

N = Nground(τ) +Nexcited(τ)

These numbers are calculated by:

Ng(τ) =
1

λ−1 − 1
; Ne(τ) = 2.612

n
Q

V
Einstein temperature is Ne(τ) = N :

τE =
2π~2

M

(
N

2.612V

)2/3

With some algebra it is shown that:

Ne ≈ N
(
τ

τE

)3/2

Fermi Gas

The density of states for a Fermi Gas:

D(ε) =
V

2π2

(
2m

~2

)3/2

ε1/2

Number is defined as usual:

N =

∫ ∞
0

dε D(ε)f(ε, τ, µ)

Energy is defined as usual:

U =

∫ ∞
0

dε εD(ε)f(ε, τ, µ)

At low temperature find that:

N =

∫ εF

0

dε D(ε); U0 =

∫ εF

0

dε εD(ε)

Which lead to the expressions:

CV =
π2

3
D(εF )τ ; p =

2NεF
5V

Ex. Heat Capacity of a
Free Electron Gas

The heat capacity of an electron gas is:

Cel =
dU

dτ
=

∫ ∞
0

dε(ε− εF )
df

dτ
D(ε)

Which becomes, with x ≡ (ε− εF )/τ :

Cel = τD(εF )

∫ ∞
0

dx x2
ex

(ex + 1)2

Which is, and has a density of states:

Cel =
π2

3
D(εF )τ, D(εF ) =

3N

2τF
Combining these, one finds that:

Cel =
π2Nτ

2τF

Ex. Debye Model

Define the Debye Temperature as the
highest temperature a crystal can reach
during a normal mode of vibration:

TD ≡
~v
kB

(
6π2N

V

)1/3

Integrating over temperatures to TD,
with the dimensionless x ≡ π~vb/Lτ :

U =

N∑
n

〈εn〉

=
3π2~v

2L

(
τL

π~v

)4 ∫ x
D

0

dx
x3

ex − 1

Which gives the DebyeT 3 law at lowT :

CV =
12π4N

5

(
τ

kBTD

)3
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Ex. Plank Law and
Stefan-Boltzmann Law

Plank distribution for particles in box
with quanta s such that ε = 〈s〉~ω:

〈s〉 =
1

exp(~ω/τ)− 1

The spectral density at ω is therefore:

u(ω) =
~

π2c3
ω3

exp(~ω/τ)− 1

Energy per area, or radiant flux density:

J =
π2

60~3c2
τ4 =

π2k4B
60~3c2

T 4

Ex. Binary Spin System

A spin system with N↑ +N↓ = N has:

g(N) = 2N , U(s) = −2smB

For a given total spin s, the number of
accessible states is given by:

g(N, s) =

(
N
N↑

)
=

N !

N↑!N↓!

=
N !

( 1
2N + s)!( 1

2N − s)!

≈
√

2

πN
2N exp

(
−2s2

N

)
Ex. Disrupted Spin System

It is illustrative to consider the entropy
of a disrupted spin system. Viz, how
sharply entropy peaks about δ = 0:

g1(N1, ŝ1 + δ)g2(N2, ŝ2 − δ)
max(g1g2)

= exp

(
−2δ2

N1
− 2δ2

N2

)
Ex. Combined Spin System

The entropy of a composite system
made of two subsystems is the product.
Note that thermodynamic variables are
split between the two subsystems:

g(N,S) =
∑
s1,s2

g1(N1, s1) g2(N2, s2)

=
∑
U1

g1(N1, U1) g2(N2, U − U1)

Ex. Spin Entropy

Spin entropy in zero magnetic field is:

Zint = (2I + 1) =⇒ σint = ln(2I + 1)

The corresponding chemical potential:

µ = τ
(
ln(n/n

Q
)− ln(2I + 1)

)
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