Physics 112 at UCLA \diamond Formula Sheet (1 of 3)

Math That Comes in Handy

Taylor Expansion is often quite useful:

$$
f(x)=\sum_{n=0}^{\infty}=\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Stirling's Approximation is essential:
$\ln (n!) \approx n \ln (n)-n+\ln (2 \pi n) / 2$

$$
\frac{d}{d n} \ln (n!) \approx \ln (n)+\frac{1}{2 n}
$$

Integration by Parts is foundational:

$$
\int u d v=u v-\int v d u
$$

The Chain Rule is good to simplify:

$$
\frac{\partial U}{\partial t}=\frac{\partial U}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\frac{\partial U}{\partial x_{2}} \frac{\partial x_{2}}{\partial t}+\ldots
$$

Geometric Series helps now and then:

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \quad(r<1)
$$

Binomial Expansion helps sometimes:

$$
(x+y)^{N}=\sum_{t=0}^{N} \frac{N!}{(N-t)!t!} x^{N-t} y^{t}
$$

Hyperbolic Identities

Hyperbolic functions are defined by:
$\cosh (x)=\frac{e^{x}+e^{-x}}{2} ; \sinh (x)=\frac{e^{x}-e^{-x}}{2}$
These identities then follow naturally:

$$
\begin{aligned}
\sinh (2 x) & =2 \sinh (x) \cosh (x) \\
\cosh (2 x) & =\cosh ^{2}(x)+\sinh ^{2}(x) \\
\cosh ^{2}(x) & =1+\sinh ^{2}(x) \\
\tanh ^{2}(x) & =1-\operatorname{sech}^{2}(x) \\
\operatorname{coth}^{2}(x) & =1+\operatorname{csch}^{2}(x)
\end{aligned}
$$

Integrals of Interest

$$
\begin{aligned}
\int_{0}^{\infty} d x e^{-\alpha^{2} x^{2}} & =\frac{1}{\alpha} \frac{\sqrt{\pi}}{2} \\
\int_{0}^{\infty} d x x^{2} \ln \left(1-e^{-x}\right) & =-\frac{\pi^{4}}{45} \\
\int_{0}^{\infty} d x \frac{x^{2} e^{x}}{\left(e^{x}-1\right)^{2}} & =\frac{\pi^{2}}{3} \\
\int_{0}^{\infty} d x \frac{x}{e^{x}-1} & =\frac{\pi^{2}}{6} \\
\int_{0}^{\infty} d x \frac{x^{2}}{e^{x}-1} & =2.404 \\
\int_{0}^{\infty} d x \frac{x^{3}}{e^{x}-1} & =\frac{\pi^{4}}{15} \\
\int_{0}^{\infty} d x \frac{x^{1 / 2}}{e^{x}-1} & =2.315
\end{aligned}
$$

Constants

These constants are fundamental:

$$
\begin{aligned}
k_{B} & =1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& =8.617330 \times 10^{-5} \mathrm{eV} / \mathrm{K} \\
\hbar & =1.054572 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& =6.582120 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s} \\
c & =2.997925 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Probability

For the multiplicity or accessible states $g(q)$ that realize value q, probability is:

$$
P(q) \equiv \frac{g(q)}{\sum_{i} g\left(q_{i}\right)} \Longrightarrow \sum_{i} P\left(q_{i}\right)=1
$$

The "expectation value" (average) is:

$$
\langle q\rangle \equiv \sum_{i} q_{i} P\left(q_{i}\right)
$$

Useful Physical Terms

Entropy is defined as $\sigma \equiv \ln (g)$, and $S=k_{B} \sigma$. Meanwhile, temperature is:

$$
\frac{1}{\tau} \equiv \frac{\partial \sigma}{\partial U}, \quad \text { and } \tau=k_{B} T
$$

The inverse of temperature is "thermodynamic beta", $\beta=1 / \tau$. The number density is number per volume, or N / V. The energy is the expectation value:

$$
U \equiv\langle\epsilon\rangle
$$

From energy, the heat capacity is:

$$
C \equiv \tau \frac{\partial \sigma}{\partial \tau} \equiv \frac{\partial U}{\partial \tau}
$$

Pressure is defined by the expansion:

$$
\epsilon(V-\Delta V)=\epsilon(V)-\frac{d \epsilon}{d V} \Delta V+\ldots
$$

With rearrangement, this yields:

$$
p=-\frac{\partial U}{\partial V}=\tau\left(\frac{\partial \sigma}{\partial V}\right)
$$

Work is defined along a path:

$$
W=\int_{V_{1}}^{V_{2}} p d V
$$

Partition Function

The partition function summarizes the thermodynamic state of a system when paired with temperature:

$$
Z=\sum_{s} \exp \left(-\frac{\epsilon_{s}}{\tau}\right)
$$

Probabilities are given by the relation:

$$
P\left(\epsilon_{s}\right)=\frac{\exp \left(-\frac{\epsilon_{s}}{\tau}\right)}{Z}
$$

Applying Z to Energy

From algebra, the energy is found as:

$$
U=\tau^{2} \frac{\partial \ln (Z)}{\partial \tau}=\tau^{2} \frac{1}{Z} \frac{\partial Z}{\partial \tau}
$$

Recalling thermodynamic beta, find:

$$
\frac{\partial}{\partial \tau}=-\beta^{2} \frac{\partial}{\partial \beta}, \quad U=-\frac{\partial \ln (Z)}{\partial \beta}
$$

From which the heat capacity follows:

$$
C_{V}=\left(\frac{\partial U}{\partial \tau}\right)_{V}=\beta^{2} \frac{\partial^{2}}{\partial \beta^{2}} \ln (Z)
$$

Helmholtz Free Energy

One thermodynamic generating function is the Helmholtz Free Energy:

$$
F \equiv U-\tau \sigma=-\tau \ln (Z)
$$

Entropy and pressure are its partials:

$$
\sigma=-\frac{\partial F}{\partial \tau}, \quad p=-\frac{\partial F}{\partial V}
$$

Chemical Potential

Chemical potential describes the tendency of a system to transport particles. Its many definitions include:

$$
\begin{aligned}
\mu & \equiv\left(\frac{\partial F}{\partial N}\right)_{\tau, V} \equiv\left(\frac{\partial F}{\partial U}\right)_{\tau, V} \tau\left(\frac{\partial \sigma}{\partial N}\right)_{\tau, V} \\
& =\left(\frac{\partial U}{\partial N}\right)_{\sigma, V}
\end{aligned}
$$

With an external potential, μ becomes:

$$
\mu=\mu_{\mathrm{int}}+\mu_{\mathrm{ext}}
$$

μ provides a way to quantify effective concentration, or activity of species i :

$$
\lambda_{i} \equiv \exp \left(\mu_{i} / \tau\right)
$$

EqUILIBRIUM

At equilibrium, σ is maximized, F is minimized, and thermodynamic quantities are uniform, $\tau_{1}=\tau_{2}$, and $\mu_{1}=\mu_{2}$. Relations like this are satisfied:

$$
\left(\frac{\partial F_{1}}{\partial N_{1}}\right)_{\tau}=\left(\frac{\partial F_{2}}{\partial N_{2}}\right)_{\tau}
$$

Thermodynamic Identities

$$
\begin{aligned}
& d F=\frac{\partial F}{\partial \tau} d \tau+\frac{\partial F}{\partial V} d V+\frac{\partial F}{\partial N} d N \\
& \Longrightarrow d F=-\sigma d \tau-p d V+\mu d N \\
& d \sigma=\frac{\partial \sigma}{\partial U} d U+\frac{\partial \sigma}{\partial V} d V+\frac{\partial \sigma}{\partial N} d N \\
& \Longrightarrow d U=+\tau d \sigma-p d V+\mu d N
\end{aligned}
$$

GibBS Sum

The Gibbs Sum, or Grand Canonical Ensemble, is an extension of the partition function, or Canonical Ensemble, by the inclusion of terms such as the chemical potential.

$$
\boldsymbol{z}=\sum \exp \left(\left(N \mu-\epsilon_{s}\right) / \tau\right)
$$

Boltzmann \& Gibbs Factor
Boltzmann factor between two states:

$$
\frac{P\left(\epsilon_{1}\right)}{P\left(\epsilon_{2}\right)}=\frac{\exp \left(-\epsilon_{1} / \tau\right)}{\exp \left(-\epsilon_{2} / \tau\right)}
$$

Gibbs factor between two states:

$$
\frac{P\left(N, \epsilon_{1}\right)}{P\left(N, \epsilon_{2}\right)}=\frac{\exp \left(\left(N \mu-\epsilon_{1}\right) / \tau\right)}{\exp \left(\left(N \mu-\epsilon_{2}\right) / \tau\right)}
$$

Distribution Functions
Define the distribution function as:

$$
f(\epsilon, \mu, \tau) \equiv\langle N(\epsilon, \mu, \tau)\rangle
$$

Fermi-Dirac distribution function:

$$
f(\epsilon, \mu, \tau)=\frac{1}{\exp ((\epsilon-\mu) / \tau)+1}
$$

Bose-Einstein distribution function:

$$
f(\epsilon, \mu, \tau)=\frac{1}{\exp ((\epsilon-\mu) / \tau)-1}
$$

Classical distribution function:

$$
f(\epsilon, \mu, \tau)=\frac{1}{\exp ((\epsilon-\mu) / \tau)}
$$

Expectation Values

Expectation values can be found from the density of states and dist. function:

$$
\begin{aligned}
\langle q\rangle & =\sum_{i} f\left(\epsilon_{i}, \tau, \mu\right) q_{i} \\
& =\int d \epsilon D(\epsilon) f(\epsilon, \tau, \mu) q(\epsilon)
\end{aligned}
$$

Fermi Energy

By the exclusion principle, fermions always have a finite chemical potential:

$$
\mu(\tau=0)=\epsilon_{F}
$$

From the energy, a velocity is defined:

$$
\epsilon_{F}=m v_{F}^{2} / 2
$$

For spin-half particles, this energy is:

$$
\epsilon_{F}=\frac{\hbar^{2}}{2 M}\left(\frac{3 \pi^{2} N}{V}\right)^{2 / 3} \equiv \tau_{F}
$$

For a spherical Fermi surface, find that:
$N=2 \cdot \frac{1}{8} \cdot \frac{4 \pi}{3} \cdot n_{F}^{3}=\frac{\pi}{3} n_{F}^{3} \Rightarrow n_{F}=\left(\frac{3 N}{\pi}\right)^{1 / 3}$
Where the internal energy is found as: $U_{0}=2 \cdot \frac{1}{8} \cdot 4 \pi \int_{0}^{n_{F}} d n n^{2} \epsilon_{n}=\frac{3}{5} N \epsilon_{F}$

Quantum Concentration

Above the quantum concentration, n_{Q} quantum effects become significant:
$n_{Q}=\left(\frac{M \tau}{2 \pi \hbar^{2}}\right)^{3 / 2} \Longrightarrow \tau_{0}=\frac{2 \pi \hbar^{2}}{M} n^{2 / 3}$
For an ideal gas, $\mu_{\text {int }}$ becomes:

$$
\mu_{\mathrm{int}}=\tau \ln \left(n / n_{Q}\right)
$$

Ex. Barometric Pressure

In a gravitational potential, we have:

$$
\mu=\tau \ln \left(n / n_{Q}\right)+M g h
$$

Equating at two different altitudes:
$\tau \ln \left(n(h) / n_{Q}\right)+M g h=\tau \ln \left(n(0) / n_{Q}\right)$
So we find a relation for concentrations:

$$
n(h)=n(0) \exp (-M g h / \tau)
$$

IDEAL GAS

For indistinguishable particles F is:

$$
F=N \tau\left[\ln \left(\frac{N}{V n_{Q}}\right)-1\right]
$$

Ideal gas law in thermodynamic and molar units, derived by $P=-\partial F / \partial V$:

$$
p V=N \tau \Longleftrightarrow P V=n R T
$$

The equipartition of energy follows:

$$
U=\frac{\text { d.o.f. }}{2} N \cdot \tau
$$

Heat capacities for monatomic gasses:

$$
C_{V}=\frac{3}{2} N, \quad C_{P}=\frac{5}{2} N
$$

Bose Gas and Condensate

The density of states for a Bose Gas:

$$
D(\epsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon^{1 / 2}
$$

In the low temperature limit find that:

$$
N=\frac{1}{\exp (-\mu / \tau)-1} \approx-\frac{\tau}{\mu}
$$

The activity is then to first order:

$$
\lambda \equiv \exp (\mu / \tau) \approx 1-\frac{1}{N}
$$

The total particle number is given by:

$$
N=N_{\text {ground }}(\tau)+N_{\text {excited }}(\tau)
$$

These numbers are calculated by:
$N_{\mathrm{g}}(\tau)=\frac{1}{\lambda^{-1}-1} ; \quad N_{\mathrm{e}}(\tau)=2.612 \frac{n_{Q}}{V}$
Einstein temperature is $N_{\mathrm{e}}(\tau)=N$:

$$
\tau_{E}=\frac{2 \pi \hbar^{2}}{M}\left(\frac{N}{2.612 V}\right)^{2 / 3}
$$

With some algebra it is shown that:

$$
N_{\mathrm{e}} \approx N\left(\frac{\tau}{\tau_{E}}\right)^{3 / 2}
$$

Fermi Gas

The density of states for a Fermi Gas:

$$
D(\epsilon)=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \epsilon^{1 / 2}
$$

Number is defined as usual:

$$
N=\int_{0}^{\infty} d \epsilon D(\epsilon) f(\epsilon, \tau, \mu)
$$

Energy is defined as usual:

$$
U=\int_{0}^{\infty} d \epsilon \epsilon D(\epsilon) f(\epsilon, \tau, \mu)
$$

At low temperature find that:
$N=\int_{0}^{\epsilon_{F}} d \epsilon D(\epsilon) ; \quad U_{0}=\int_{0}^{\epsilon_{F}} d \epsilon \epsilon D(\epsilon)$
Which lead to the expressions:

$$
C_{V}=\frac{\pi^{2}}{3} D\left(\epsilon_{F}\right) \tau ; \quad p=\frac{2 N \epsilon_{F}}{5 V}
$$

Ex. Heat Capacity of a Free Electron Gas

The heat capacity of an electron gas is:

$$
C_{\mathrm{el}}=\frac{d U}{d \tau}=\int_{0}^{\infty} d \epsilon\left(\epsilon-\epsilon_{F}\right) \frac{d f}{d \tau} D(\epsilon)
$$

Which becomes, with $x \equiv\left(\epsilon-\epsilon_{F}\right) / \tau$:

$$
C_{\mathrm{el}}=\tau D\left(\epsilon_{F}\right) \int_{0}^{\infty} d x x^{2} \frac{e^{x}}{\left(e^{x}+1\right)^{2}}
$$

Which is, and has a density of states:

$$
C_{\mathrm{el}}=\frac{\pi^{2}}{3} D\left(\epsilon_{F}\right) \tau, \quad D\left(\epsilon_{F}\right)=\frac{3 N}{2 \tau_{F}}
$$

Combining these, one finds that:

$$
C_{\mathrm{el}}=\frac{\pi^{2} N \tau}{2 \tau_{F}}
$$

Ex. Debye Model

Define the Debye Temperature as the highest temperature a crystal can reach during a normal mode of vibration:

$$
T_{D} \equiv \frac{\hbar v}{k_{B}}\left(\frac{6 \pi^{2} N}{V}\right)^{1 / 3}
$$

Integrating over temperatures to T_{D}, with the dimensionless $x \equiv \pi \hbar v b / L \tau$:

$$
\begin{aligned}
U & =\sum_{n}^{N}\left\langle\epsilon_{n}\right\rangle \\
& =\frac{3 \pi^{2} \hbar v}{2 L}\left(\frac{\tau L}{\pi \hbar v}\right)^{4} \int_{0}^{x_{D}} d x \frac{x^{3}}{e^{x}-1}
\end{aligned}
$$

Which gives the Debye T^{3} law at low T :

$$
C_{V}=\frac{12 \pi^{4} N}{5}\left(\frac{\tau}{k_{B} T_{D}}\right)^{3}
$$

Physics 112 at UCLA \diamond Formula Sheet (3 of 3)

Ex. Plank Law and
 Stefan-Boltzmann Law

Plank distribution for particles in box with quanta s such that $\epsilon=\langle s\rangle \hbar \omega$:

$$
\langle s\rangle=\frac{1}{\exp (\hbar \omega / \tau)-1}
$$

The spectral density at ω is therefore:

$$
u(\omega)=\frac{\hbar}{\pi^{2} c^{3}} \frac{\omega^{3}}{\exp (\hbar \omega / \tau)-1}
$$

Energy per area, or radiant flux density:

$$
J=\frac{\pi^{2}}{60 \hbar^{3} c^{2}} \tau^{4}=\frac{\pi^{2} k_{B}^{4}}{60 \hbar^{3} c^{2}} T^{4}
$$

Ex. Binary Spin System

A spin system with $N_{\uparrow}+N_{\downarrow}=N$ has:

$$
g(N)=2^{N}, \quad U(s)=-2 s m B
$$

For a given total spin s, the number of accessible states is given by:

$$
\begin{aligned}
g(N, s) & =\binom{N}{N_{\uparrow}}=\frac{N!}{N_{\uparrow}!N_{\downarrow}!} \\
& =\frac{N!}{\left(\frac{1}{2} N+s\right)!\left(\frac{1}{2} N-s\right)!} \\
& \approx \sqrt{\frac{2}{\pi N}} 2^{N} \exp \left(-\frac{2 s^{2}}{N}\right)
\end{aligned}
$$

Ex. Disrupted Spin System

It is illustrative to consider the entropy of a disrupted spin system. Viz, how sharply entropy peaks about $\delta=0$:

$$
\begin{aligned}
& \frac{g_{1}\left(N_{1}, \hat{s}_{1}+\delta\right) g_{2}\left(N_{2}, \hat{s}_{2}-\delta\right)}{\max \left(g_{1} g_{2}\right)} \\
& \quad=\exp \left(-\frac{2 \delta^{2}}{N_{1}}-\frac{2 \delta^{2}}{N_{2}}\right)
\end{aligned}
$$

Ex. Combined Spin System

The entropy of a composite system made of two subsystems is the product. Note that thermodynamic variables are split between the two subsystems:

$$
\begin{aligned}
g(N, S) & =\sum_{s_{1}, s_{2}} g_{1}\left(N_{1}, s_{1}\right) g_{2}\left(N_{2}, s_{2}\right) \\
& =\sum_{U_{1}} g_{1}\left(N_{1}, U_{1}\right) g_{2}\left(N_{2}, U-U_{1}\right)
\end{aligned}
$$

Ex. Spin Entropy

Spin entropy in zero magnetic field is:

$$
Z_{\mathrm{int}}=(2 I+1) \Longrightarrow \sigma_{\mathrm{int}}=\ln (2 I+1)
$$

The corresponding chemical potential:

$$
\mu=\tau\left(\ln \left(n / n_{Q}\right)-\ln (2 I+1)\right)
$$

