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MATH THAT COMES IN HANDY

Taylor Expansion is often quite useful:
N ") n
= ZO =— (x —a)

Stirling’s Approximation is essential:
In(n!) = nin(n) —n + In(27wn)/2

d 1
— In(n!) =1 —
dn n(nt) ~ In(n) + 2n

Integration by Parts is foundational:

/udv:uvf/vdu

The Chain Rule is good to simplify:
U _OU by | OU om
ot Oxy Ot | Oxy O

Geometric Series helps now and then:
S
n=0

Binomial Expansion helps sometimes:
N N
M
(N =t)t!

(r<1)

(z+y~ =
t=0

HYPERBOLIC IDENTITIES
Hyperbolic functions are defined by:

cosh(z) = i; sinh(z) = -

2
These identities then follow naturally:

sinh(2z) = 2sinh(x) cosh(x)

cosh(2z) = cosh?(z) + sinh?(x)
cosh?(z) = 1 + sinh?(z)
) =
) =

—T

tanh?(z) = 1 — sech?(x)
coth?(z) = 1 + csch?(z)

INTEGRALS OF INTEREST
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CONSTANTS
These constants are fundamental:
kp = 1.380649 x 1072 J/K
=8.617330 x 107° eV/K
hi=1.054572 x 10734 J - s
=6.582120 x 10710 eV -5
¢ =2.997925 x 10® m/s

PROBABILITY

For the multiplicity or accessible states
g(g) that realize value ¢, probability is:

Plo) = —
Z > P
The * expectatlon value” (average) is

= Zi a:P(q;)

USeEFUL PHYSICAL TERMS

Entropy is defined as ¢ = In(g), and
S = kpo. Meanwhile, temperature is:
1 Qo

;z%, and 7 = kT

The inverse of temperature is “thermo-
dynamic beta”, § = 1/7. The number
density is number per volume, or N/V.
The energy is the expectation value:

U = (e)
From energy, the heat capacity is:
c=,9 _0U
T o 0T

Pressure is defined by the expansion:
V-AV)=¢V) - —AV
(V= AV) = (V) = SEAV +.
With rearrangement, this yields:

__oU _ (0o
P="3y ="\ av

Work is defined along a path:
Va
W = pdV
Vi

PARTITION FUNCTION

The partition function summarizes the
thermodynamic state of a system when
paired with temperature:

73 o0 ()

Probabilities are given by the relation:
exp(—<)

P(ES) = 7

APPLYING Z TO ENERGY

From algebra, the energy is found as:

0ln(Z) 107

— 2 — 277

Uv=r ar | Zor

Recalling thermodynamic beta, find:
0 5 0 ~ 0In(Z)
or p B’ U= 0B

From which the heat capacity follows:

_(9U\ _ 0
o= (5r), =)

HeELMHOLTZ FREE ENERGY

One thermodynamic generating func-

tion is the Helmholtz Free Energy:
F=U-710=-1ln(2)

Entropy and pressure are its partials:

oF oF

5o el

T P= v

CHEMICAL POTENTIAL

Chemical potential describes the ten-
dency of a system to transport particles.
Its many definitions include:

[ OF _ (OF 0o
w=(aw),, = ()3 (%),
_[oU B do
~(o),, = (%),

With an external potential, u becomes:
MU = Hint + Mext

1 provides a way to quantify effective

concentration, or activity of species i:

Ai = exp(ui/T)

EQUILIBRIUM

At equilibrium, o is maximized, F' is
minimized, and thermodynamic quan-
tities are uniform, 71 =79, and puy = ps.
Relations like this are satisfied:

oF\ _ (0F
ONy ). \ONy/,

THERMODYNAMIC IDENTITIES

8 OF oF
== dF: —odr —pdV + pdN
do 8 do

= dU = +Tdcr—pdV—|—udN
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GIBBS SUM

The Gibbs Sum, or Grand Canonical
Ensemble, is an extension of the parti-
tion function, or Canonical Ensemble,
by the inclusion of terms such as the
chemical potential.

2= exp(Nu - €)/7)
BortzmMANN & GiBBS FACTOR

Boltzmann factor between two states:
P(e1) _ exp(—e1/7)
P(es)  exp(—ea/T)
Gibbs factor between two states:
P(N,e1) _ exp((Np —e1)/7)
P(N.e2) _ exp((Np—e2)/7)

DISTRIBUTION FUNCTIONS

Define the distribution function as:
fle,pn,m) = (N(e, b, 7))
Fermi-Dirac distribution function:

1
f €N, T)=
©mT) = = W+ 1
Bose-Einstein distribution function:
1
f 67 b T -
(&) exp((e —p)/T) =1
Classical distribution function:

1
oD = Ste=mm

EXPECTATION VALUES

Expectation values can be found from
the density of states and dist. function:

(@)= fleiT.m) g
_ / de D(€) f(e,7, 1) q(e)

FErRMI ENERGY

By the exclusion principle, fermions al-
ways have a finite chemical potential:
plr = 0) = ex
From the energy, a velocity is defined:
€ = mus/2
For spin-half particles, this energy is:

B2 (3n2N\?/3
()

€F

Toam \ VvV
For a spherical Fermi surface, find that:
1 4rn T 3N\/?

Where the internal energy is found as:

1 nE 3
U0:2-7~47T/ dn n’e, = —Nep
8 0 5

QUANTUM CONCENTRATION

Above the quantum concentration, ng,
quantum effects become significant:

Mt 3/2 2 h2
"Q =\ orn2 = 0=

For an ideal gas, pint becomes:
Hint = Tln(n/nQ)

n2/3

ExX. BAROMETRIC PRESSURE

In a gravitational potential, we have:
p=TIn(n/n,) + Mgh
Equating at two different altitudes:
TIn(n(h)/n,) + Mgh = 7In(n(0)/n,)
So we find a relation for concentrations:

n(h) = n(0) exp(—Mgh/T)
IDEAL GAS

For indistinguishable particles F' is:

()

Ideal gas law in thermodynamic and
molar units, derived by P = —0F/0V:
pV = N1 < PV =nRT

The equipartition of energy follows:
.o.f.
U= ; N-T
Heat capacities for monatomic gasses:

3 5
Cy ==N Cp==-N
v =54 P=5

BoOsE GAS AND CONDENSATE

The density of states for a Bose Gas:

_ Vo 2m\?
T 4n2 \ K2 €

In the low temperature limit find that:

D(e)

exp(—p/T) =1 p
The activity is then to first order:
1
A= ~1— —
exp(p/7) I

The total particle number is given by:
N = Nground (T) + Nexcited(T)
These numbers are calculated by:

n
Ng(T) No(7) =2.612-2

p— 1 .
oAl 1%

Einstein temperature is No(7) = N:
2ch2 (N \*?

T M (2.612V>

With some algebra it is shown that:

1\ 3/2
Ne = N ()
TE

TE

FErMI GAS

The density of states for a Fermi Gas:

_ Vo2V g
22 \ R2
Number is defined as usual:
(oo}
N :/ de D(e)f(e, 7, 1)
0
Energy is defined as usual:
U= / de eD(e)f(e, 7, 1)
0
At low temperature find that:

N:/ de D(e); Up =
0

D(e)

€F

de eD(e)
0

Which lead to the expressions:
. _ 2Nep

2
Cy = 3 D(ep)T; P=—

Ex. HEAT CAPACITY OF A
FREE ELECTRON GAS

The heat capacity of an electron gas is:
au o df
— = de(e — —D
dr /0 ele—er) dr (€)
Which becomes, with © = (e — ep)/7:
C,=1D d 2 ¢
1 T (GF) /0 €L T (ez + 1)2
Which is, and has a density of states:
2 3N

Cel =

T

el — —D 5 D = 5
Ca 3 (er)T (er) 2rr
Combining these, one finds that:
O = miNT
27‘F

EX. DEBYE MODEL

Define the Debye Temperature as the
highest temperature a crystal can reach
during a normal mode of vibration:

T _ 6m2 N\ 1/
P=rs VvV

Integrating over temperatures to Tp,
with the dimensionless x = whvb/ L7

N
U= Z<€n>

3n2hw [ 7L \* /‘”D x3
= — dx
2L 7Th'U 0 et — 1

Which gives the Debye T3 law at low T':

_ 1274 N T 3
B ksTp

Cv 3
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Ex. PLANK LAW AND
STEFAN-BOLTZMANN LAw

Plank distribution for particles in box
with quanta s such that € = (s)uw:

(o) = exp(hw/T) — 1
The spectral density at w is therefore:
h w3
m2c3 exp(hw/7) — 1
Energy per area, or radiant flux density:
72 2k}
J= — 7= B4
60h3c2 60h3c2
EX. BINARY SPIN SYSTEM

u(w) =

A spin system with Ny + N = N has:
g(N) =2, U(s) = —2smB
For a given total spin s, the number of

accessible states is given by:
N N!
%9 = () =z
N!

(AN +9)I(AN —s)!

2 252
~ | 2N exp [~
aNe P ( N )

ExX. DISRUPTED SPIN SYSTEM

It is illustrative to consider the entropy
of a disrupted spin system. Viz, how
sharply entropy peaks about § = 0:
91(N1,51 4 6)g2(Na, 82 — 0)
max(g19z)

Ex. COMBINED SPIN SYSTEM

The entropy of a composite system
made of two subsystems is the product.
Note that thermodynamic variables are
split between the two subsystems:

g(N,S) = Z 91 (N1, 51) g2(Na, $2)

51,52

= 291(N1,U1)92(N2,U - Ul)

Ui

Ex. SPIN ENTROPY

Spin entropy in zero magnetic field is:

Zit = (21 +1) = o = In(2I + 1)

The corresponding chemical potential:
p =7 (In(n/n,) — In(2I + 1))
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