## Maxwell's Equations

For the scalar and vector potentials: $E=-\nabla V-(1 / c) \partial_{t} \boldsymbol{A} ; \quad \boldsymbol{B}=\nabla \times \boldsymbol{A}$ Now, Maxwell's equations in SI units (left) and Gaussian CGS units (right).

Charges are the source of electric fields:

$$
\nabla \cdot \boldsymbol{E}=\frac{\rho}{\epsilon_{0}} \Longleftrightarrow \nabla \cdot \boldsymbol{E}=4 \pi \rho
$$

There is no magnetic charge:

$$
\nabla \cdot \boldsymbol{B}=0 \Longleftrightarrow \nabla \cdot \boldsymbol{B}=0
$$

A changing magnetic field induces $\boldsymbol{E}$ :
$\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} \Longleftrightarrow \nabla \times \boldsymbol{E}=-\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$
$\boldsymbol{B}$ originates in currents, induction too:
$\nabla \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}+\frac{1}{c^{2}} \frac{\partial \boldsymbol{E}}{\partial t} \Leftrightarrow \frac{4 \pi}{c} \boldsymbol{J}+\frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t}$

## Electrostatics in SI

Lorentz force law for charged particles:

$$
\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})
$$

For a point particle at the origin:
$V=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} ; \boldsymbol{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\boldsymbol{r}} ; \boldsymbol{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\boldsymbol{r}}$
Poisson's equation for scalar potential:

$$
\nabla^{2} V=-\rho / \epsilon_{0}
$$

The scalar potential by integration:

$$
V(x)=\frac{1}{4 \pi \epsilon_{0}} \int d^{3} x^{\prime} \frac{\rho\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|}
$$

Poisson's equation for vector potential:

$$
\nabla^{2} \boldsymbol{A}=-\mu_{0} \boldsymbol{J}
$$

The vector potential by integration:

$$
\boldsymbol{A}(x)=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{\boldsymbol{J}\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|}
$$

## Electrostatics in CGS

Lorentz force law for charged particles:

$$
\boldsymbol{F}=q(\boldsymbol{E}+(\boldsymbol{v} / c) \times \boldsymbol{B})
$$

For a point particle at the origin:
$V=\frac{q}{r} ; \quad \boldsymbol{E}=\frac{q}{r^{2}} \hat{\boldsymbol{r}} ; \quad \boldsymbol{F}=\frac{q_{1} q_{2}}{r^{2}} \hat{\boldsymbol{r}}$
Poisson's equation for scalar potential:

$$
\nabla^{2} V=-4 \pi \rho
$$

The scalar potential by integration:

$$
V(x)=\int d^{3} x^{\prime} \frac{\rho\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|}
$$

Poisson's equation for vector potential:

$$
\nabla^{2} \boldsymbol{A}=-(4 \pi / c) \boldsymbol{J}
$$

The vector potential by integration:

$$
\boldsymbol{A}(x)=\frac{1}{c} \int d^{3} x^{\prime} \frac{\boldsymbol{J}\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|}
$$

## ElECTRODYNAMICS

Current density is, noting $\boldsymbol{I}=\int \boldsymbol{J} \cdot d \boldsymbol{a}$ :

$$
\boldsymbol{J}=n q \boldsymbol{v}_{D}=\sigma(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \approx \sigma \boldsymbol{E}
$$

This is equivalent to Ohm's law:

$$
\boldsymbol{J}=\sigma \boldsymbol{E} \Longleftrightarrow \mathcal{E}=I R
$$

The Joule heating law relates power:

$$
P=I \mathcal{E}=I^{2} R=\mathcal{E}^{2} / R
$$

The electromotive force is given by:

$$
\mathcal{E}=\oint \boldsymbol{E} \cdot d \boldsymbol{l}
$$

Magnetic flux is defined as:

$$
\Phi \equiv \int \boldsymbol{B} \cdot d \boldsymbol{a}
$$

The flux rule means that a changing magnetic field induces an electric field:

$$
\mathcal{E}=-\frac{d \Phi}{d t} \Longleftrightarrow \nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}
$$

Lenz's law: induced current opposes a change in flux, to minimize flux change.

## InDUCTION

Inductance between two loops $a$ and $b$ : $\Phi_{b}=\int \boldsymbol{B}_{a} \cdot d \boldsymbol{a}_{b} \Leftrightarrow \Phi_{a}=\int \boldsymbol{B}_{b} \cdot d \boldsymbol{a}_{a}$ Flux relates by the mutual inductance, where in the electron's frame there is an electric field even though in the rest frame there is only a magnetic field:

$$
\Phi_{b}=M_{b a} I_{a} \Leftrightarrow \Phi_{a}=M_{a b} I_{b}
$$

Mutual inductances are related as:

$$
M_{a b}=M_{b a}
$$

The self inductance of a current loop:

$$
\Phi=L I \Longleftrightarrow \mathcal{E}=-L \partial_{t} I
$$

## Work

Note the general form of conservation:
$\partial_{t}($ density of stuff $)+\nabla \cdot($ current of stuff $)=0$
Energy contained in the electric field:

$$
W=\frac{\epsilon_{0}}{2} \int_{\text {space }} E^{2} d \tau
$$

Energy contained in the magnetic field:

$$
W=\frac{1}{2 \mu_{0}} \int_{\text {space }} B^{2} d \tau
$$

The energy density in SI and Gaussian, (in CGS $\boldsymbol{E}$ and $\boldsymbol{B}$ have the same units): $w=\frac{\epsilon_{0}}{2}|\boldsymbol{E}|^{2}+\frac{1}{2 \mu_{0}}|\boldsymbol{B}|^{2} \Leftrightarrow \frac{1}{8 \pi}\left(|\boldsymbol{E}|^{2}+|\boldsymbol{B}|^{2}\right)$
Energy in a capacitor and inductor:
$W_{\text {capacitor }}=\frac{1}{2} C V^{2} ; \quad W_{\text {inductor }}=\frac{1}{2} L I^{2}$

## Circuits

Ohm's law and the flux rule can help: $\mathcal{E}=I R ; \quad \mathcal{E}=-\partial_{t} \Phi ; \quad I \equiv \partial_{t} Q$ Batteries, Capacitors, and Inductors: $\mathcal{E}=\mathcal{E}_{0} ; \quad \mathcal{E}=\frac{Q}{C} ; \quad \mathcal{E}=-L \frac{d I}{d t}=-L \frac{d^{2} Q}{d t^{2}}$ Note that for mutual inductance:

$$
\mathcal{E}=-\frac{d \Phi}{d t}=-M_{b a} \frac{d I_{a}}{d t}(\text { or })-M_{a b} \frac{d I_{b}}{d t}
$$

Solutions to these ODEs are sines and cosines or exponentials. Consider $t=0$.

## Electromagnetic Waves

The wave equation is in 1 D and 3 D :
$\partial_{x x} f=\left(1 / v^{2}\right) \partial_{t t} f \Longleftrightarrow \nabla^{2} f=\left(1 / v^{2}\right) \partial_{t t} f$
General solution to the wave equation is a superposition of right and left:

$$
f(x, t)=r(x-v t)+l(x+v t)
$$

Sinusoidal waves are a good sample, (amplitude $A$, wave number $k$, phase $\phi$ ):

$$
f(x, t)=A \cos [k(x-v t)+\phi]
$$

Period, frequency, angular frequency:

$$
T=\frac{2 \pi}{k v} ; \quad \nu=\frac{1}{T} ; \quad \omega=2 \pi \nu
$$

Waves may be expressed as complex exponentials, if they aren't multiplied.

Electromagnetic induction means that electromagnetic waves can propagate in the absence of currents or charges: $\nabla^{2} \boldsymbol{E}=\mu_{0} \epsilon_{0} \partial_{t t} \boldsymbol{E} ; \quad \nabla^{2} \boldsymbol{B}=\mu_{0} \epsilon_{0} \partial_{t t} \boldsymbol{B}$ Electromagnetic waves propagate with $v=c \equiv 1 / \sqrt{\mu_{0} \epsilon_{0}}$, and can be framed as:

$$
\boldsymbol{E}\|\hat{z} ; \quad \boldsymbol{B}\| \hat{\boldsymbol{y}} ; \quad \boldsymbol{v} \| \boldsymbol{E} \times \boldsymbol{B}
$$

A simple form with $|\boldsymbol{E}|=|\boldsymbol{B}|$ in CGS:
$\boldsymbol{E}(\boldsymbol{x}, t)=\boldsymbol{E}_{0} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}=E_{0} \cos (\omega t-\phi) \hat{\boldsymbol{E}}$
$\boldsymbol{B}(\boldsymbol{x}, t)=\boldsymbol{B}_{0} e^{i(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}=B_{0} \cos (\omega t-\phi) \hat{\boldsymbol{B}}$
Where the directions are defined as:

$$
\begin{aligned}
\hat{\boldsymbol{k}} & =\text { propagation } \\
\hat{\boldsymbol{n}} & =\text { polarization } \\
\hat{\boldsymbol{E}} & =\hat{\boldsymbol{n}} \\
\hat{\boldsymbol{B}} & =\hat{\boldsymbol{k}} \times \hat{\boldsymbol{n}}
\end{aligned}
$$

Retarded Time Potentials Retarded time accounts for the speed of light in solving Maxwell's Equations where the integrals are as before, with:

$$
t_{r}=t-\frac{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}{c}
$$

## Poynting Vector, Power

Now, converting to Gaussian units, the Poynting vector, or energy flux is given:

$$
\boldsymbol{S}=\frac{c}{4 \pi} \boldsymbol{E} \times \boldsymbol{B}
$$

The total power radiated through a volume is then (often time-dependent):

$$
P=\int_{\text {volume }} r^{2} \sin (\theta) d r d \theta d \varphi \boldsymbol{S}
$$

It may be useful to recall that:

$$
\int_{0}^{\pi} d \theta \sin ^{3}(\theta)=\frac{4}{3}
$$

## Dipole Radiation

In general, the dipole moment is:

$$
\boldsymbol{P}=\int_{V} d^{3} r^{\prime} \rho\left(\boldsymbol{r}^{\prime}\right) \boldsymbol{r}^{\prime}
$$

For a dipole moving with period $\omega$, in the far field approximation $|\boldsymbol{x}| \gg\left|\boldsymbol{x}^{\prime}\right|$, with $k=\omega / c$ and $r=|\boldsymbol{x}|$ :

$$
\begin{aligned}
\boldsymbol{A} & =\frac{1}{c} \int d^{3} x^{\prime} \frac{\boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} e^{i k\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} e^{i \omega t} \\
& \approx \frac{1}{c} \frac{e^{-i k r}}{r} e^{i \omega t} \int d^{3} x^{\prime} \boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right)
\end{aligned}
$$

From this, the dipole fields are then:

$$
\boldsymbol{B}=k^{2} \frac{e^{-i k r}}{r} \boldsymbol{n} \times \boldsymbol{P} ; \quad \boldsymbol{E}=-\boldsymbol{n} \times \boldsymbol{B}
$$

The Poynting vector then becomes:

$$
\boldsymbol{S}=\frac{c}{4 \pi} \boldsymbol{E} \times \boldsymbol{B}=\frac{c}{4 \pi}|\boldsymbol{B}|^{2} \hat{\boldsymbol{n}}
$$

Time-average of the Poynting vector is:

$$
\langle\boldsymbol{S}\rangle=\frac{c}{8 \pi} \frac{k^{4}}{r^{2}}|\boldsymbol{n} \times \boldsymbol{p}|^{2} \hat{\boldsymbol{n}}
$$

It may be useful to recall that:

$$
|\boldsymbol{A} \times \boldsymbol{B}|^{2}=[|\boldsymbol{A} \| \boldsymbol{B}| \sin (\theta)]^{2}
$$

The Larmor formula for power is then:

$$
P=\frac{2}{3} \frac{\ddot{p}^{2}}{c^{3}}
$$

## Moving Point Charges

The Liénard-Wiechert potentials for moving charges are given in CGS as:
$V(\boldsymbol{r}, t)=\left[\frac{q c}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| c-\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \cdot \boldsymbol{v}_{q}}\right]_{\mathrm{ret}}$
$\boldsymbol{A}(\boldsymbol{r}, t)=\left[\frac{v}{c^{2}} V(\boldsymbol{r}, t)\right]_{\mathrm{ret}}$
From these, with some effort, one may derive the Larmor formula for power:

$$
P=\frac{2}{3} \frac{q^{2}}{c^{3}} \dot{v}^{2}
$$

## Special Relativity

Special relativity postulates that you can't tell one inertial frame from another, and the speed of light is a universal constant independent of the relative motion of the source and receiver.

For velocity $v$ between frames, we let:

$$
\beta=\frac{v}{c} ; \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

It happens to be convenient to express quantities as 4 -vectors, $A=\left(A_{0}, \boldsymbol{A}\right)$.
Lorentz Transform between frames is:

$$
L=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

4 -vectors transform as $A^{\prime}=L A$. Note that the metric $A \cdot B=A_{0} B_{0}-\boldsymbol{A} \cdot \boldsymbol{B}$ is invariant under Lorentz Transform.
The "light cone" dictates causality:

$$
s^{2}=c^{2}\left(t_{2}^{2}-t_{1}^{2}\right)-\left|\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right|^{2}
$$

$s^{2}>0$ timelike
$s^{2}<0 \quad$ spacelike
$s^{2}=0 \quad$ lightlike
The proper time $\tau$ is the time in the particle's rest frame, and generally:

$$
d \tau=\frac{d t}{\gamma(t)}
$$

With moving sources/recievers, wavelenth may red or blue shift (Doppler):

$$
\omega^{\prime}=\omega \sqrt{\frac{1-\beta}{1+\beta}}
$$

Useful relations from conservation:

$$
\begin{gathered}
p=\gamma m v ; \quad E=\gamma m c^{2} \\
E=\sqrt{m^{2} c^{4}+c^{2} p^{2}}
\end{gathered}
$$

In the ultra-relativistic limit:

$$
p=\gamma m v ; \quad E=c|p|
$$

In the non-relativistic limit:

$$
p=m v ; \quad E=m c^{2}+p^{2} / 2 m
$$

Field-strength tensor $F=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}$ :

$$
F=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

Tensors transform as $F^{\prime}=L F L^{T}$, which means that a change of frames changes the electromagnetic fields.

