Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \boldsymbol{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \times \boldsymbol{E} & =0-\frac{\partial \boldsymbol{B}}{\partial t} \\
\nabla \cdot \boldsymbol{B} & =0 \\
\nabla \times \boldsymbol{B} & =\mu_{0} \boldsymbol{J}+\mu_{0} \varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}
\end{aligned}
$$

Elementary Results

Lorentz Force on a charged particle:

$$
\boldsymbol{F}=q \boldsymbol{E}+q \boldsymbol{v} \times \boldsymbol{B}
$$

Gauss's law, from Green's theorem:

$$
\oint \boldsymbol{E} \cdot d \boldsymbol{a}=\frac{1}{\varepsilon_{0}} \int_{V} \rho d \tau=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}}
$$

Point charge: $\boldsymbol{E}=q /\left(4 \pi \varepsilon_{0} r^{2}\right) \hat{\boldsymbol{r}}$, and from $\nabla \cdot \boldsymbol{E}=\rho / \varepsilon_{0}, \quad \nabla \cdot\left(\hat{\boldsymbol{r}} / r^{2}\right)=4 \pi \delta(\boldsymbol{r})$
Infinite line: $\quad \boldsymbol{E}=\lambda /\left(2 \pi \varepsilon_{0} s\right) \hat{\boldsymbol{s}}$
Infinite sheet: $\boldsymbol{E}=\sigma /\left(2 \varepsilon_{0}\right) \hat{\boldsymbol{n}}$
Cylinder in: $\quad \boldsymbol{E}=\rho r /\left(2 \varepsilon_{0}\right) \hat{\boldsymbol{s}}$
Cylinder out: $\boldsymbol{E}=\rho a^{2} /\left(2 \varepsilon_{0} r\right) \hat{\boldsymbol{s}}$
Coulomb's law for two point particles:

$$
\boldsymbol{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\boldsymbol{r}}
$$

Vector Calculus

Vector operators are:
∇ Gradient is the direction
$\nabla \cdot$ Divergence is the source
$\nabla \times$ Curl is the amount of swirl
The gradient of a scalar function is:

$$
\nabla f(x, y, z)=\frac{\partial f}{\partial x} \hat{\mathbf{l}}+\frac{\partial f}{\partial y} \hat{\mathbf{j}}+\frac{\partial f}{\partial z} \hat{\mathbf{k}}
$$

The divergence of a vector function is:

$$
\nabla \cdot \boldsymbol{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}
$$

The curl of a vector function is:

$$
\nabla \times \boldsymbol{F}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

Green's Theorem:

$$
\int_{V}(\boldsymbol{\nabla} \cdot \boldsymbol{v}) d \tau=\oint_{S} \boldsymbol{v} \cdot d \boldsymbol{a}
$$

Stoke's Theorem:

$$
\int_{S}(\boldsymbol{\nabla} \times \boldsymbol{v}) d \boldsymbol{a}=\oint_{l} \boldsymbol{v} \cdot d \boldsymbol{l}
$$

$d l$ sum of three inf. translations
$d a$ product of two inf. translations in the direction of the third $d \tau$ product of three inf. translations

Superposition Principle

"Forces exerted by charges are linear."
(they add and scalar multiply linearly)
$\nabla \cdot\left(E_{1}+E_{2}+\cdots+E_{n}\right)=\frac{\rho_{1}+\rho_{2}+\cdots+\rho_{n}}{\varepsilon_{0}}$
For a collection of charges it holds that:

$$
\boldsymbol{E}=\frac{1}{4 \pi \varepsilon_{0}} \sum q_{i} \frac{\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}}{\left\|\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}\right\|^{3}}
$$

For a continuous charge distribution:

$$
\boldsymbol{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \rho\left(\boldsymbol{r}_{\boldsymbol{i}}\right) \frac{\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}}{\left\|\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}\right\|^{3}} d \tau_{i}
$$

With differentiation, the potential is:

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\boldsymbol{r}_{\boldsymbol{i}}\right)}{\left\|\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}\right\|} d \tau_{i}
$$

The Law of Cosines is often useful:

$$
a^{2}+b^{2}-2 a b \cos (\theta)=c^{2}
$$

Electric Potential, Work

Electric potential energy is defined wrt an origin, and the change in energy is:

$$
\Delta V=-\int_{a}^{b} \boldsymbol{E} \cdot d \boldsymbol{l}
$$

Electric field comes from the potential:

$$
E=-\nabla V \Longrightarrow \nabla^{2} V=-\frac{\rho}{\varepsilon_{0}}
$$

Point charge: $V=q /\left(4 \pi \varepsilon_{0} r\right)$
Infinite line: $\quad V=-\lambda /\left(2 \pi \varepsilon_{0}\right) \cdot \ln (s / \alpha)$
Infinite sheet: $V=\sigma(z-\alpha) /\left(2 \varepsilon_{0}\right)$
Sphere shell: $V=\sigma a^{2} /\left(\varepsilon_{0} r\right)$
Work is the energy of a path of force:

$$
W=-\int_{\infty}^{r} \boldsymbol{F} \cdot d \boldsymbol{l}=-q \Delta V
$$

Work for a discrete distribution is:
$W=\frac{1}{4 \pi \varepsilon_{0}} \sum_{\text {pairs }} \frac{q_{i} q_{j}}{r_{i j}}=\frac{1}{2} \sum q_{i} V\left(r_{i}\right)$
Work for a continuous distribution is:
$W=\frac{1}{2} \int \rho V d \tau \xrightarrow{\text { all space }} W=\frac{\varepsilon_{0}}{2} \int E^{2} d \tau$

Conductors \& CAPACITORS

In conductors, charge accumulates on the outer surface(s) so that there is no net electric field within the conductor.

In a capacitor, capacitance is given as:

$$
C \equiv \frac{q}{\Delta V}
$$

The work invested in a capacitor is:

$$
W=\frac{C \Delta V^{2}}{2}
$$

Polarization \& Multipoles

The Law of Cosines combined with Taylor Expansion, for \boldsymbol{r} from origin to the point, and \boldsymbol{r}^{\prime} from origin to $d q$:
$\frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}=\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{n} P_{n}(\cos (\alpha))$
Now, with dipole moment $\boldsymbol{p} \equiv q \boldsymbol{d}$, V may be written as a series where Coulomb's Law is the potential for a monopole term. For the dipole term:

$$
V_{d}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\hat{\boldsymbol{r}} \cdot \boldsymbol{p}}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q d \cos (\theta)}{r^{2}}
$$

More generally, the potential is a series:
$V=\frac{1}{4 \pi \varepsilon_{0}} \sum_{n=0}^{\infty} \frac{1}{r^{n}} \int\left(r^{\prime}\right)^{n} P_{n}(\cos (\alpha)) \rho\left(r^{\prime}\right) d \tau^{\prime}$ The polarization is $\boldsymbol{P} \equiv \boldsymbol{p} / V$, noting that in general, $\boldsymbol{P} \equiv\left(\int \boldsymbol{r}^{\prime} \rho\left(\boldsymbol{r}^{\prime}\right) d \tau^{\prime}\right) / V$. Bound charges are thus determined:

$$
\begin{gathered}
\rho_{b}=-\nabla \cdot \boldsymbol{P} \\
\sigma_{b}=\boldsymbol{P} \cdot \hat{\boldsymbol{n}}
\end{gathered}
$$

From these the potential is found as:
$V=\frac{1}{4 \pi \varepsilon_{0}}\left(\oint_{S} \frac{\sigma_{b}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d a^{\prime}+\int_{V} \frac{\rho_{b}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d \tau^{\prime}\right)$
With $\boldsymbol{P}=\left(\varepsilon-\varepsilon_{0}\right) \boldsymbol{E}$, displacement is:

$$
\boldsymbol{D}=\varepsilon \boldsymbol{E}=\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}
$$

This allows an analog to Gauss's Law:

$$
\oint_{S} \boldsymbol{D} \cdot d \boldsymbol{a}=q_{f}
$$

Method of Images

The method of images sometimes works to solve the Laplace Equation:

- Mirror position and charge
- Find V by Coulomb's Law
- Find \boldsymbol{E} with $\boldsymbol{E}=-\nabla V$
- Find W by integration, division

Legendre Polynomials
The first few Legendre Polynomials:

$$
\begin{aligned}
& P_{0}=1 \\
& P_{1}=x \\
& P_{2}=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{aligned}
$$

Generally, Rodrigues' formula is:

$$
P_{n}=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

Rectangular Laplace Eqn.

The method of separation of variables is often useful to solve the Laplace Equation. In rectangular coordinates, a general solution for infinite z is:
$V=\left(A e^{k x}+B e^{-k x}\right)(C \sin (k y)+D \cos (k y))$
Method to solve rectangular problems:

- Use ansatz above (or similar)
- Remove coefficients with B.Cs.
- Solve for remaining coefficient \star Fourier's trick may help Fourier's Trick is the multiplication on both sides by $\sin \left(n^{\prime} \pi y / a\right)$ followed by integration where orthogonality then reduces the problem to something like:

$$
c_{n}=\frac{2}{a} \int_{0}^{a} d y V_{0}(y) \sin \left(\frac{n \pi y}{a}\right)
$$

Spherical Laplace Eqn.
Separation of variables also works in spherical geometries. Here, the general solution with azimuthal symmetry is:

$$
V=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos (\theta))
$$

Method to solve spherical problems:

- Use ansatz above (or similar)
- Remove coefficients with B.Cs.
- Solve for remaining coefficient
\star break V into P_{l} and solve
\star (or) break $E=-\nabla V$ into P_{l}
\star (or) break σ up with boost
A useful orthogonality relation is:

$$
\int_{0}^{\pi} d \theta P_{l} P_{l^{\prime}} \sin (\theta)=\frac{2}{2 l+1} \delta_{l l^{\prime}}
$$

For finding the electric field this helps:

$$
\nabla=\frac{\partial}{\partial x} \hat{\boldsymbol{x}}+\frac{\partial}{\partial y} \hat{\boldsymbol{y}}=\frac{\partial}{\partial r} \hat{\boldsymbol{r}}+\frac{1}{r} \frac{\partial}{\partial \theta} \hat{\boldsymbol{\theta}}
$$

Geometry

Cyclic permutations summarize cross products, with signs, and directions:

If a vector direction is fixed, no prime, if it changes, like $\hat{\boldsymbol{s}}$, then add a prime.

Currents and Forces

$$
\begin{aligned}
\boldsymbol{I} & =\lambda \boldsymbol{v}, & & \boldsymbol{F}_{\mathrm{mag}}=\int(\boldsymbol{I} \times \boldsymbol{B}) d l \\
\boldsymbol{K} & =\sigma \boldsymbol{v}, & & \boldsymbol{F}_{\mathrm{mag}}=\int(\boldsymbol{K} \times \boldsymbol{B}) d a \\
\boldsymbol{J} & =\rho \boldsymbol{v}, & & \boldsymbol{F}_{\mathrm{mag}}=\int(\boldsymbol{J} \times \boldsymbol{B}) d \tau
\end{aligned}
$$

Biot-Savart, Ampère's Law
Biot-Savart Law for steady current, $\partial_{t} \rho=0$ which also holds for \boldsymbol{K} and \boldsymbol{J} :

$$
\boldsymbol{B}=\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{I} \times\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)}{\left\|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right\|^{3}} d l^{\prime}
$$

Schema for solving B.S. Law problems:

- Note: $d \boldsymbol{l}$ and \boldsymbol{I} are often collinear
- Find $\boldsymbol{r}, \boldsymbol{r}^{\prime}$, and \boldsymbol{I} (or $d \boldsymbol{l}$)
- Compute $d \boldsymbol{l} \times \boldsymbol{r}$, and $d \boldsymbol{l} \times \boldsymbol{r}^{\prime}$
- Break up and evaluate integral

Ampère's Law works best when $\boldsymbol{B} \| d \boldsymbol{l}$, and behaves basically like Gauss's Law:

$$
\oint \boldsymbol{B} \cdot d \boldsymbol{l}=\mu_{0} I_{\mathrm{enc}}
$$

The Vector Potential

The vector potential is found with:

$$
\boldsymbol{A}=\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{J}(r) d \tau^{\prime}}{\left\|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right\|}
$$

Some nice properties of the \boldsymbol{A} and \boldsymbol{B} :

$$
\begin{gathered}
\nabla \times \boldsymbol{A}=\boldsymbol{B} ; \quad \nabla^{2} \boldsymbol{A}=-\mu_{0} J \\
\nabla \times \boldsymbol{B}=\mu_{0} \boldsymbol{J} ; \quad \nabla \cdot \boldsymbol{B}=0 \\
\nabla \cdot \boldsymbol{J}=-\partial \rho / \partial t
\end{gathered}
$$

Multipoles, Magnetization

The vector potential may be expanded as a multipole, in particular the dipole:

$$
\begin{aligned}
\boldsymbol{A} & =\frac{\mu_{0} I}{4 \pi r^{2}} \oint r^{\prime} \cos (\theta) d l \\
& =-\frac{\mu_{0} I}{4 \pi r^{2}} \hat{\boldsymbol{r}} \times \oint d a^{\prime} \\
& =\frac{\mu_{0} I}{4 \pi r^{2}} \boldsymbol{m} \times \hat{\boldsymbol{r}}
\end{aligned}
$$

Magnetic dipole moment $\boldsymbol{m} \equiv I \int d a^{\prime} \hat{\boldsymbol{n}}$.
Magnetization is $\boldsymbol{M}=\boldsymbol{m} / V$, so thence:

$$
\boldsymbol{J}_{b}=\nabla \times \boldsymbol{M} ; \quad \boldsymbol{K}_{b}=\boldsymbol{M} \times \hat{\boldsymbol{n}}
$$

From this the vector potential is then:

$$
V=\frac{\mu_{0}}{4 \pi}\left(\oint_{S} \frac{\boldsymbol{K}_{b}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d a^{\prime}+\int_{V} \frac{\boldsymbol{J}_{b}}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d \tau^{\prime}\right)
$$

Define the magnetic auxiliary field as:

$$
\boldsymbol{H} \equiv \boldsymbol{B} / \mu_{0}-\boldsymbol{M}=\mu \boldsymbol{B}
$$

For the purpose of finding free current:

$$
\nabla \times \boldsymbol{H}=\boldsymbol{J}_{f}
$$

Another Gauss's Law analog is:

$$
\oint \boldsymbol{H} \cdot d l=I_{f, \mathrm{enc}}
$$

Scalar potential if $J_{f}=0$ and $\nabla \times \boldsymbol{M}=0$:

$$
V \equiv-\int \boldsymbol{H} \cdot d \boldsymbol{l} \Longrightarrow \boldsymbol{H}=-\nabla V
$$

Boundary Conditions

$$
E_{\mathrm{out}}^{\|}-E_{\mathrm{in}}^{\|}=0
$$

$$
D_{\mathrm{out}}^{\|}-D_{\mathrm{in}}^{\|}=P_{\mathrm{out}}^{\|}-P_{\mathrm{in}}^{\|}
$$

$$
H_{\mathrm{out}}^{\perp}-H_{\mathrm{in}}^{\perp}=M_{\mathrm{in}}^{\perp}-M_{\mathrm{out}}^{\perp}
$$

$$
B_{\mathrm{out}}^{\|}-B_{\mathrm{in}}^{\|}=\mu_{0} K \times \hat{\boldsymbol{n}}
$$

$H_{\mathrm{out}}^{\|}-H_{\mathrm{in}}^{\|}=K_{f} \times \hat{\boldsymbol{n}}$

