Physics 105B at UCLA \diamond Formula Sheet (1 of 2)

Solving Differential EqS

Begin with a linear, second order ODE:

$$
\ddot{x}(t)+\alpha \dot{x}(t)+\beta x(t)=y(t)
$$

Now note that the solution to this is:

$$
x(t)=x_{h}(t)+x_{p}(t)
$$

Find homogeneous solution via Ansatz:

$$
x_{h}(t)=e^{\lambda t} \Longrightarrow \lambda^{2}+\alpha \lambda+\beta=0
$$

Find particular solution via Ansatz:
$x_{p}(t)= \begin{cases}\exp & c_{1} \exp (\omega t) \\ \text { trig } & c_{1} \cos (\omega t)+c_{2} \sin (\omega t) \\ \text { poly } & \sum_{i=0}^{n} c_{i} t^{i}\end{cases}$ Then solve the algebraic equations and combine solutions for general solution.

Decoupling ODE Systems

General method to decouple equations:

- Write your system of equations
- Differentiate one and rearrange
- Substitute into other, simplify
- Repeat as needed until decoupled

Vector Identities

The dot product is given by:

$$
\begin{aligned}
\boldsymbol{v} \cdot \boldsymbol{w} & =\|\boldsymbol{v}\|\|\boldsymbol{w}\| \cos (\theta) \\
\boldsymbol{v} \cdot \boldsymbol{w} & =\boldsymbol{v}_{\hat{\mathbf{1}}} \boldsymbol{w}_{\hat{\mathbf{\imath}}}+\boldsymbol{v}_{\hat{\mathbf{\jmath}}} \boldsymbol{w}_{\hat{\mathbf{\jmath}}}+\boldsymbol{v}_{\hat{\mathbf{k}}} \boldsymbol{w}_{\hat{\mathbf{k}}}
\end{aligned}
$$

The cross product is given by:

$$
\begin{aligned}
\|\boldsymbol{v} \times \boldsymbol{w}\| & =\|\boldsymbol{v}\|\|\boldsymbol{w}\| \sin (\theta) \\
\boldsymbol{v} \times \boldsymbol{w} & =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\boldsymbol{v}_{\hat{\mathbf{\imath}}} & \boldsymbol{v}_{\hat{\mathbf{\jmath}}} & \boldsymbol{v}_{\hat{\mathbf{k}}} \\
\boldsymbol{w}_{\hat{\mathbf{\imath}}} & \boldsymbol{w}_{\hat{\mathbf{\jmath}}} & \boldsymbol{w}_{\hat{\mathbf{k}}}
\end{array}\right|
\end{aligned}
$$

Scalar and Vector Triple Products:

$$
\begin{aligned}
a \cdot(b \times c) & =b \cdot(c \times a)=c \cdot(a \times b) \\
a \times(b \times c) & =(a \cdot c) b-(a \cdot b) c
\end{aligned}
$$

Scalar and Vector Quadruple Products:
$(\boldsymbol{a} \times \boldsymbol{b}) \cdot(\boldsymbol{c} \times \boldsymbol{d})=(\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d})-(\boldsymbol{b} \cdot \boldsymbol{c})(\boldsymbol{a} \cdot \boldsymbol{d})$
$(a \times b) \times(c \times d)=(a \cdot b \times d) c-(a \cdot b \times c) d$

Other Coordinate Systems

Rectangular, $x_{1}=x_{1} ; x_{2}=x_{2} ; x_{3}=x_{3}$:
$d s^{2}=d x^{2}+d y^{2}+d z^{2} ; d v=d x d y d z$ Cylindrical:
$x_{1}=r \cos (\phi) ; x_{r}=r \sin (\phi) ; x_{3}=z$ $r=\sqrt{x_{1}^{2}+x_{2}^{3}} ; \phi=\tan ^{-1}\left(x_{2} / x_{1}\right) ; z=x_{3}$ $d s^{2}=d r^{2}+r^{2} d \phi^{2}+d z^{2} ; d v=r d r d \phi d z$ Spherical:
$x_{1}=r \sin (\theta) \cos (\phi) ; x_{2}=r \sin (\theta) \sin (\phi) ; x_{3}=r \cos (\theta)$
$r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} ; \theta=\cos ^{-1}\left(x_{3} / r\right) ; \phi=\tan ^{-1}\left(x_{2} / x_{1}\right)$
$d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2}(\theta) d \phi^{2} ; d v=r^{2} \sin (\theta) d r d \theta d \phi$

Trigonometric Identities
Euler's formula, $e^{i \theta}=\cos (\theta)+i \sin (\theta)$: $\sin (\theta)=\left(e^{i \theta}-e^{-i \theta}\right) / 2 i ; \cos (\theta)=\left(e^{i \theta}+e^{-i \theta}\right) / 2$
The Pythagorean identity is:

$$
\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1
$$

Sum and difference identities are:
$\sin (\alpha \pm \beta)=\sin (\alpha) \cos (\beta) \pm \cos (\alpha) \sin (\beta)$
$\cos (\alpha \pm \beta)=\cos (\alpha) \cos (\beta) \mp \sin (\alpha) \sin (\beta)$
Fourier sum to product identities are:
$\sin (m x) \cos (n x)=\frac{1}{2}[\sin ((m+n) x)+\sin ((m-n) x)]$
$\cos (m x) \cos (n x)=\frac{1}{2}[\cos ((m+n) x)+\cos ((m-n) x)]$
$\sin (m x) \sin (n x)=\frac{1}{2}[\cos ((m-n) x)-\cos ((m+n) x)]$

Hamilton's Principle

Lagrangian, and generalized momenta:

$$
L=T-U ; \quad p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}
$$

The Euler-Lagrange Equations are:
$\delta \int_{t_{1}}^{t_{2}} d t L=0 \Longrightarrow \frac{\partial L}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=0$
The Hamiltonian is given by:

$$
H=\left(\sum p_{j} \dot{q}_{j}\right)-L
$$

If generalized coordinates/constraints are time independent, and potential is independent of \dot{q}, then $H=T+U$.

Linear and angular momentum are:

$$
\boldsymbol{p}_{\mathrm{lin}}=m \dot{\boldsymbol{x}}_{\boldsymbol{i}} ; \quad \boldsymbol{p}_{\mathrm{ang}}=\boldsymbol{r} \times \boldsymbol{p}
$$

Hamilton's equations are given by:

$$
\dot{q}_{k}=\frac{\partial H}{\partial p_{k}} ; \quad \dot{p}_{k}=-\frac{\partial H}{\partial q_{k}}
$$

The Liouville Theorem says that the canonical volume is constant through a motion, $d \rho / d t=0$:
$N=\rho d V ; \quad d V=d q_{1} \ldots d q_{s} d p_{1} \ldots d p_{s}$

Obtaining Hamilton's Eqs

- Draw a picture of your system
- Find the Lagrangian
- find x, y in generalized form
- differentiate x and y
- substitute for T and U
- Find Hamilton's Equations
- Find generalized momenta
- Hamiltonian as a sum
- Convert \dot{x} to terms of p_{x}
- Find Hamilton's Equations

Central Force Motion

For central force motion:
$F=-\frac{k}{r^{2}} ; \quad U=-\int d r F(r)=-\frac{k}{r}$
Lagrangian with $\mu=\left(m_{1} m_{2}\right) /\left(m_{1}+m_{2}\right)$:
$L=\frac{1}{2} \mu|\dot{r}|^{2}-U(r)=\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-U(r)$
The angular momentum and energy:

$$
\ell=\mu r^{2} \dot{\theta} ; \quad U_{\ell}=\frac{\ell^{2}}{2 \mu r^{2}}
$$

The total energy is found to be:
$E=\frac{1}{2} \mu \dot{r}^{2}+U_{\ell}+U \Longleftrightarrow \dot{r}= \pm \sqrt{\frac{2}{\mu}\left(E-U-U_{\ell}\right)}$

Dynamics of Systems

The center of mass is, with $d m=\rho d V$:
$\boldsymbol{R}_{\mathbf{c m}}=\sum \frac{m_{i}}{M} \boldsymbol{r}_{\boldsymbol{i}} ; \quad \boldsymbol{R}_{\mathbf{c m}}=\frac{1}{M} \int \boldsymbol{r} d m$
Linear momentum and acceleration:
$\boldsymbol{P}=M \dot{\boldsymbol{R}}_{\mathrm{cm}} ; \quad \boldsymbol{F}=\dot{\boldsymbol{P}}=M \ddot{\boldsymbol{R}}_{\mathrm{cm}}$
The angular momentum is:

$$
L=\boldsymbol{R}_{\mathrm{cm}} \times P+\sum r_{i} \times \boldsymbol{p}_{i}
$$

The Kinetic Energy is:
$T=T_{\text {trans }}+T_{\text {rot }}=\frac{1}{2} M V^{2}+\sum m_{i} v_{i}^{2}$
Momentum is conserved, ex. rockets:

$$
v=v_{0}+v_{\mathrm{ex}} \ln \left(m_{0} / m\right)
$$

Solving Elastic Collisions

- Draw a picture of your system
- Write conservation of \boldsymbol{p} and E
- Solve for easily found quantities
- With scattering angle ψ, $\cos ^{2}(\psi)+\sin ^{2}(\psi)=1$
- Isolate variables from others
- Find the quantities that you want
- Substitute solved variables
- Put everything as knowns
- Algebra to completion

Scattering Cross Sections

The differential cross section is:

$$
\sigma_{\mathrm{diff}}(\theta)=\frac{d \sigma_{\mathrm{tot}}}{d \Omega}=\frac{b}{\sin (\theta)}\left|\frac{d b}{d \theta}\right|
$$

The total cross section is:
$\sigma_{\mathrm{tot}}=\int \frac{d \sigma_{\mathrm{tot}}}{d \Omega} d \Omega=\int \sigma_{\text {diff }}(\theta) 2 \pi \sin (\theta) d \theta$
Scattering angle; angular momentum
$\ell=b \sqrt{2 \mu T_{r=\infty}}, E=T_{r=\infty}, \theta=\pi-2 \Theta:$
$\Delta \Theta=\int_{r_{\text {min }}}^{r_{\text {max }}} \frac{\ell / r^{2} d r}{\sqrt{2 \mu\left(E-U-U_{\ell}\right)}} \Rightarrow \Theta=\int_{r_{\text {min }}}^{\infty} \frac{b / r^{2} d r}{\sqrt{1-\left(b^{2} / r^{2}\right)-\left(U / T_{\infty}\right)}}$
Rutherford Scattering has infinite $\sigma_{\text {tot }}$:
$U(r)=\frac{k}{r} ; \sigma_{\text {diff }}(\theta)=\frac{k^{2}}{\left(4 T_{r=\infty}\right)^{2}} \cdot \frac{1}{\sin ^{4}(\theta / 2)}$

Non-Inertial Frames

For any \boldsymbol{Q} in rotating coordinates:

$$
\left(\frac{d \boldsymbol{Q}}{d t}\right)_{\text {fixed }}=\left(\frac{d \boldsymbol{Q}}{d t}\right)_{\text {rotating }}+\boldsymbol{\omega} \times \boldsymbol{Q}
$$

Including all fictitious forces, one finds:

$$
\begin{aligned}
\boldsymbol{F}_{\mathrm{eff}}= & \boldsymbol{F}-m \ddot{\boldsymbol{R}}-m(\dot{\boldsymbol{\omega}} \times \boldsymbol{r}) \\
& -m\left(\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \boldsymbol{r})-2 m\left(\boldsymbol{\omega} \times \boldsymbol{v}_{\boldsymbol{r}}\right)\right.
\end{aligned}
$$

On Earth $\dot{\boldsymbol{\omega}}=0$, and, $m \ddot{\boldsymbol{R}}=m(\dot{\boldsymbol{\omega}} \times \boldsymbol{r})$:

$$
\boldsymbol{F}_{\mathrm{eff}}=\boldsymbol{F}_{\text {other ext }}+m \boldsymbol{g}-2 m\left(\boldsymbol{\omega} \times \boldsymbol{v}_{\boldsymbol{r}}\right)
$$

Rigid Body Dynamics

Moment of inertia tensor components:

$$
\begin{aligned}
I_{i j} & \equiv \sum m_{\alpha}\left(\left(\delta_{i, j} \sum_{k}^{1,2,3} x_{\alpha, k}^{2}\right)-x_{\alpha, i} x_{\alpha, j}\right) \\
I_{i j} & =\int_{v} d v \rho(r)\left(\left(\delta_{i, j} \sum x_{k}^{2}\right)-x_{i} x_{j}\right)
\end{aligned}
$$

Moving the origin by \boldsymbol{a} from $\tilde{\boldsymbol{r}}$ to $\boldsymbol{r}_{\mathbf{c m}}$:

$$
I_{i j}=\widetilde{I}_{i j}-M\left(a^{2} \delta_{i j}-a_{i} a_{j}\right)
$$

Angular momentum may be computed:

$$
L_{i}=\sum I_{i j} \omega_{j} \Longrightarrow \boldsymbol{L}=\boldsymbol{I} \cdot \boldsymbol{\omega}
$$

Rotational kinetic energy is found as:
$T_{\text {rot }}=\frac{1}{2} \sum m_{i}\left(\boldsymbol{\omega} \times \boldsymbol{r}_{\boldsymbol{\alpha}}\right)^{2}=\frac{1}{2} \boldsymbol{\omega} \cdot \boldsymbol{L}$
$=\frac{1}{2} \sum I_{i j} \omega_{i} \omega_{j} \quad$ sum over i and j
Principal moments of inertia are the eigenvalues and principal axes are the eigenvectors of the inertia tensor. (It is easier if already partially diagonalized)

Euler Angles

Euler angles quantify angular velocity with angles from fixed to body frames: $\omega_{1}=\dot{\phi}_{1}+\dot{\theta}_{1}+\dot{\psi}_{1}=\dot{\phi} \sin (\theta) \sin (\psi)+\dot{\theta} \cos (\psi)$ $\omega_{2}=\dot{\phi}_{2}+\dot{\theta}_{2}+\dot{\psi}_{2}=\dot{\phi} \sin (\theta) \cos (\psi)-\dot{\theta} \sin (\psi)$ $\omega_{3}=\dot{\phi}_{3}+\dot{\theta}_{3}+\dot{\psi}_{3}=\dot{\phi} \cos (\theta)+\dot{\psi}$
Torque is the sum of tangential forces: $\boldsymbol{\Gamma}=\left(\frac{d \boldsymbol{L}}{d t}\right)_{\mathrm{f}}=\left(\frac{\partial \boldsymbol{L}}{\partial t}\right)_{\mathrm{b}}+\boldsymbol{\omega} \times \boldsymbol{L} \Rightarrow\left(\frac{\partial \boldsymbol{L}}{\partial t}\right)_{\mathrm{b}}=\boldsymbol{\Gamma}-\boldsymbol{\omega} \times \boldsymbol{L}$ For motions with external forces Γ_{i} :

$$
\begin{aligned}
I_{1} \dot{\omega}_{1} & =\Gamma_{1}-\omega_{2} \omega_{3}\left(I_{3}-I_{2}\right) \\
I_{2} \dot{\omega}_{2} & =\Gamma_{2}-\omega_{1} \omega_{3}\left(I_{1}-I_{3}\right) \\
I_{3} \dot{\omega}_{3} & =\Gamma_{3}-\omega_{1} \omega_{2}\left(I_{2}-I_{1}\right)
\end{aligned}
$$

Decoupling ODE Systems

Define normal coordinates as:
$\boldsymbol{Q}_{\boldsymbol{i}}=\boldsymbol{q} \cdot \boldsymbol{v}_{\boldsymbol{i}} ; \quad \boldsymbol{v}_{\boldsymbol{i}}$ normalized
Equations decouple with substitution
Ex. $\boldsymbol{v}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\binom{1}{1}$, and $\boldsymbol{v}_{\mathbf{2}}=\frac{1}{\sqrt{2}}\binom{1}{-1}$:
$Q_{1} \equiv\left(q_{1}+q_{2}\right) / 2 ; \quad Q_{2} \equiv\left(q_{1}-q_{2}\right) / 2$

Coupled Oscillations

With coupled oscillations of two or more oscillators, there appear normal modes $\boldsymbol{v}_{\boldsymbol{i}}$, and normal frequencies ω_{i}, which may be evaluated with initial conditions to find a general solution.

- Draw a picture of your system
- Find L (as in Hamilton's Eqs)
- Write Euler-Lagrange Equations
- Make it only include $\ddot{q}_{i} \& q_{i}$
- Differentiate and use Ansatz

$$
q_{1}=A_{1} e^{i \omega t} ; \ldots q_{n}=A_{n} e^{i \omega t}
$$

- Divide by $e^{i \omega t}$
- Write matrix equation $\boldsymbol{M A}=\mathbf{0}$
- Solve secular eqn $|\boldsymbol{M}|=0$ for ω_{i}^{2}
- Write the n . mode frequencies ω_{i}
- Solve for $\boldsymbol{v}_{\boldsymbol{i}}$ if $\left(\boldsymbol{M}-\omega_{i}^{2} \mathbf{1}\right) \boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0}$
- Explicitly write the vectors
- Can normalize $\boldsymbol{v}_{\boldsymbol{i}}^{\boldsymbol{T}} \boldsymbol{M} \boldsymbol{v}_{\boldsymbol{i}}=1$
- $\boldsymbol{v}_{\boldsymbol{i}}$ are orthogonal if ω_{i}^{2} are distinct, for symmetric \boldsymbol{M}
- Write the general solution:
$\boldsymbol{q}=\left(\begin{array}{c}q_{1} \\ \vdots \\ q_{n}\end{array}\right)=\sum_{i} P_{i} \boldsymbol{v}_{\boldsymbol{i}} \cos \left(\omega_{i} t-\phi_{i}\right)$
$\binom{1}{1},\binom{1}{{ }_{-1}} \Rightarrow\binom{A \cos \left(\omega_{1} t-\alpha\right)+B \cos \left(\omega_{2} t-\beta\right)}{A \cos \left(\omega_{1} t-\alpha\right)-B \cos \left(\omega_{2} t-\beta\right)}$
- Solve for boundary conditions
- Explicitly write derivatives

Weak Coupling

The goal is to find $q_{1}(t)$ and $q_{2}(t)$.

- Write in uncoupled frequencies

$$
\begin{aligned}
& -\omega_{0}=\left(\omega_{1}+\omega_{2}\right) / 2 \\
& -\Longrightarrow \omega_{1} \approx \omega_{0}(1+\epsilon) \\
& -\Longrightarrow \omega_{2} \approx \omega_{0}(1-\epsilon)
\end{aligned}
$$

- Solve for the general solution
- Make the solution a product
- Use Fourier's Identities
- Write in terms of ϵ

LOADED STRING

The Lagrangian for the loaded string with n masses m of spacing d at $q_{j}(t)$:

$$
L=\frac{1}{2} \sum_{j=1}^{n+1} m \dot{q}_{j}^{2}-\frac{\tau}{d}\left(q_{j-1}-q_{j}\right)^{2}
$$

Which has the equations of motion:

$$
\ddot{q}_{j}=\frac{\tau}{m d}\left(q_{j-1}-2 q_{j}+q_{j+1}\right)
$$

With the Ansatz $q_{j}(t)=a_{j} e^{i \omega t}$, then $q_{j}(t)$ is sum over $r=1, \ldots, n$ frequencies: $a_{j r}=a_{r} \sin \left(j \frac{r \pi}{n+1}\right) ; \omega_{r}=\sqrt{\frac{4 \tau}{m d}} \sin \left(\frac{r \pi}{2(n+1)}\right)$

Continuous Systems

General formulae for oscillating strings:
$v=\sqrt{T / \rho}, \lambda f=v, \omega=2 \pi f, k=\omega / v=2 \pi / \lambda$
If both ends are at rest, Fourier Sines:
$a_{n}=\frac{2}{L} \int_{0}^{L} d x q(x, 0) \sin \left(\frac{n \pi}{L} x\right) ; b_{n} \sim \dot{q}(x, 0)$
$\omega_{n}=\sqrt{\frac{\tau}{\rho}} \frac{2}{d} \sin \left(\frac{n \pi}{L} \frac{d}{2}\right) \stackrel{d \rightarrow 0}{\Longrightarrow} \omega_{n}=\sqrt{\frac{\tau}{\rho}} \frac{n \pi}{L}$
$q(x, t)=\sum_{n}\left(a_{n} \cos \left(\omega_{n} t\right)+\frac{b_{n}}{\omega_{n}} \sin \left(\omega_{n} t\right)\right) \sin \left(\frac{n \pi}{L} x\right)$
For driving forces, think about how to
expand $F(x, t)$, and how the Fourier
Expansion changes. Draw a diagram.
Wave equation, Helmholtz equation:

$$
\frac{\partial^{2} \Psi}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}} ; \frac{\partial^{2} \psi_{n}}{\partial x^{2}}+k_{n}^{2} \psi=0
$$

May be solved by two separation types:

$$
\Psi(x, t)=f(x+v t)+g(x-v t)
$$

(or) $\Psi(x, t)=\sum_{n} \psi_{n}(x) \exp \left(i \omega_{n} t\right)$
Phase, v_{p}, and group, v_{g}, velocities:

$$
v_{p}=\frac{\omega}{k} \text { and } v_{g}=\frac{d \omega}{d k} \text { for } k=\frac{n \pi}{L}
$$

Special Relativity

Einstein's Special Relativity postulates:
I. Same physical laws in all inertial frames.
II. Light's speed is a universal constant.

Times and distances measured in their own frames are known as "proper."
Galilean invariance gives the transform between frames of $x_{1}^{\prime}=x_{1}-v t, t^{\prime}=t$.
With v in the x_{1} direction, the Lorentz transformation from the stationary x_{1} frame to the moving x_{1}^{\prime} frame is, with $\beta=v / c$ and the factor $\gamma=1 / \sqrt{1-\beta^{2}}$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}^{\prime}=\gamma\left(x_{1}-v t\right) \\
x_{2}^{\prime}=x_{2} \\
x_{3}^{\prime}=x_{3}
\end{array}\right\}\left\{\begin{array}{l}
x_{1}=\gamma\left(x_{1}^{\prime}+v t^{\prime}\right) \\
x_{2}=x_{2}^{\prime} \\
x_{3}=x_{3}^{\prime} \\
t^{\prime}=\gamma\left(t-\frac{v x_{1}}{c^{2}}\right)
\end{array}\right\}\left(\begin{array}{l}
t=\gamma\left(t^{\prime}+\frac{v x_{1}^{\prime}}{c^{2}}\right)
\end{array}\right\} \\
& \left\{\begin{array}{l}
\dot{x}_{1}^{\prime}=\left(\dot{x}_{1}-v\right) /\left(1-\dot{x}_{1} v / c^{2}\right) \\
\dot{x}_{2}^{\prime}=\dot{x}_{2} /\left(\gamma\left(1-\dot{x}_{1} v / c^{2}\right)\right) \\
\dot{x}_{3}^{\prime}=\dot{x}_{3} /\left(\gamma\left(1-\dot{x}_{1} v / c^{2}\right)\right)
\end{array}\right\}
\end{aligned}
$$

With l in x frame, and observer in x^{\prime} frame seeing both ends at same time:

$$
l^{\prime}=l / \gamma=l \sqrt{1-\beta^{2}}
$$

With t at a fixed location in x frame, and observer in x^{\prime} frame: $\Delta t^{\prime}=t_{2}^{\prime}-t_{1}^{\prime}=\gamma \Delta t=\Delta t / \sqrt{1-\beta^{2}}$
Relativistic Doppler effect for receding $v<0$ and nearing $v>0$, with $\lambda f=c$: $f_{\text {detect }}=\frac{\sqrt{1+\beta}}{\sqrt{1-\beta}} f_{\text {emit }} \Leftrightarrow \lambda_{\mathrm{d}}=\frac{\sqrt{1-\beta}}{\sqrt{1+\beta}} \lambda_{\mathrm{e}}$

