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Solving Differential Eqs

Begin with a linear, second order ODE:

ẍ(t) + α ẋ(t) + β x(t) = y(t)

Now note that the solution to this is:
x(t) = xh(t) + xp(t)

Find homogeneous solution via Ansatz:

xh(t) = eλt =⇒ λ2 + αλ+ β = 0
Find particular solution via Ansatz:

xp(t) =


exp c1 exp(ωt)

trig c1 cos(ωt) + c2 sin(ωt)

poly
∑n
i=0 cit

i

Then solve the algebraic equations and
combine solutions for general solution.

Decoupling ODE Systems

General method to decouple equations:
• Write your system of equations
• Differentiate one and rearrange
• Substitute into other, simplify
• Repeat as needed until decoupled

Vector Identities

The dot product is given by:

v ·w = ||v||||w|| cos(θ)

v ·w = v̂ıwı̂ + v̂w̂ + vk̂wk̂

The cross product is given by:

||v ×w|| = ||v||||w|| sin(θ)

v ×w =

∣∣∣∣∣∣
ı̂ ̂ k̂
v̂ı v̂ vk̂

wı̂ w̂ wk̂

∣∣∣∣∣∣
Scalar and Vector Triple Products:

a·(b×c) = b·(c×a) = c·(a×b)

a×(b×c) = (a·c)b− (a·b)c

Scalar and Vector Quadruple Products:

(a×b)·(c×d) = (a·c)(b·d)− (b·c)(a·d)
(a×b)×(c×d) = (a·b×d)c− (a·b×c)d

Other Coordinate Systems

Rectangular, x1 =x1; x2 =x2; x3 =x3:

ds2 = dx2 + dy2 + dz2; dv = dx dy dz
Cylindrical:
x1 = r cos(φ); xr = r sin(φ); x3 = z

r=
√
x2

1+x3
2; φ=tan−1(x2/x1); z=x3

ds2 = dr2+r2dφ2+dz2; dv = r dr dφ dz
Spherical:
x1 =r sin(θ) cos(φ); x2 =r sin(θ) sin(φ); x3 =r cos(θ)

r=
√
x2

1 + x2
2 + x2

3; θ=cos
−1

(x3/r); φ=tan
−1

(x2/x1)

ds
2

=dr
2
+r

2
dθ

2
+r

2
sin

2
(θ)dφ

2
; dv=r

2
sin(θ) dr dθ dφ

Trigonometric Identities

Euler’s formula, eiθ = cos(θ) + i sin(θ):

sin(θ) = (e
iθ−e−iθ)/2i; cos(θ) = (e

iθ
+e
−iθ

)/2

The Pythagorean identity is:

sin2(α) + cos2(α) = 1

Sum and difference identities are:

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

Fourier sum to product identities are:

sin(mx) cos(nx) = 1
2 [sin((m+n)x) + sin((m−n)x)]

cos(mx) cos(nx) = 1
2 [cos((m+n)x)+ cos((m−n)x)]

sin(mx) sin(nx) = 1
2 [cos((m−n)x)− cos((m+n)x)]

Hamilton’s Principle

Lagrangian, and generalized momenta:

L = T − U ; pi =
∂L

∂q̇i
The Euler-Lagrange Equations are:

δ

∫ t2

t1

dt L = 0 =⇒ ∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0

The Hamiltonian is given by:

H =
(∑

pj q̇j
)
− L

If generalized coordinates/constraints
are time independent, and potential is
independent of q̇, then H = T + U .

Linear and angular momentum are:

plin = mẋi; pang = r × p

Hamilton’s equations are given by:

q̇k =
∂H

∂pk
; ṗk = −∂H

∂qk

The Liouville Theorem says that the
canonical volume is constant through
a motion, dρ/dt = 0:

N = ρdV ; dV = dq1 . . . dqsdp1 . . . dps

Obtaining Hamilton’s Eqs

• Draw a picture of your system
• Find the Lagrangian

– find x, y in generalized form
– differentiate x and y
– substitute for T and U

• Find Hamilton’s Equations
– Find generalized momenta
– Hamiltonian as a sum
– Convert ẋ to terms of px
– Find Hamilton’s Equations

Central Force Motion

For central force motion:

F = − k

r2
; U = −

∫
dr F (r) = −k

r
Lagrangian with µ=(m1m2)/(m1+m2):

L =
1

2
µ|ṙ|2−U(r) =

1

2
µ(ṙ2+r2θ̇2)−U(r)

The angular momentum and energy:

` = µr2θ̇; U` =
`2

2µr2

The total energy is found to be:

E=
1

2
µṙ

2
+ U` + U ⇐⇒ ṙ=±

√
2

µ
(E−U−U`)

Dynamics of Systems

The center of mass is, with dm = ρ dV :

Rcm =
∑ mi

M
ri; Rcm =

1

M

∫
r dm

Linear momentum and acceleration:

P = MṘcm; F = Ṗ = MR̈cm

The angular momentum is:
L = Rcm × P +

∑
ri × pi

The Kinetic Energy is:

T = Ttrans + Trot = 1
2MV 2 +

∑
miv

2
i

Momentum is conserved, ex. rockets:
v = v0 + vex ln(m0/m)

Solving Elastic Collisions

• Draw a picture of your system
• Write conservation of p and E
• Solve for easily found quantities

– With scattering angle ψ,
cos2(ψ) + sin2(ψ) = 1

– Isolate variables from others
• Find the quantities that you want

– Substitute solved variables
– Put everything as knowns
– Algebra to completion

Scattering Cross Sections

The differential cross section is:

σdiff(θ) =
dσtot

dΩ
=

b

sin(θ)

∣∣∣∣dbdθ
∣∣∣∣

The total cross section is:

σtot =

∫
dσtot

dΩ
dΩ =

∫
σdiff(θ)2π sin(θ)dθ

Scattering angle; angular momentum
` = b

√
2µTr=∞, E = Tr=∞, θ = π−2Θ:

∆Θ=

∫ rmax

rmin

/̀r2 dr√
2µ(E−U−U`)

⇒Θ=

∫ ∞
rmin

b/r2 dr√
1−(b2/r2)−(U/T∞)

Rutherford Scattering has infinite σtot:

U(r) =
k

r
; σdiff(θ) =

k2

(4Tr=∞)2
· 1

sin4(θ/2)
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Non-Inertial Frames

For any Q in rotating coordinates:(
dQ

dt

)
fixed

=

(
dQ

dt

)
rotating

+ ω ×Q

Including all fictitious forces, one finds:

Feff =F −mR̈−m(ω̇×r)

−m(ω×(ω×r)− 2m(ω×vr)

On Earth ω̇ = 0, and, mR̈ = m(ω̇×r):

Feff = Fother ext +mg − 2m(ω×vr)

Rigid Body Dynamics

Moment of inertia tensor components:

Iij ≡
∑

mα

((
δi,j

1,2,3∑
k

x2
α,k

)
−xα,ixα,j

)
Iij =

∫
v

dv ρ(r)
((
δi,j
∑

x2
k

)
−xixj

)
Moving the origin by a from r̃ to rcm:

Iij = Ĩij −M(a2δij − aiaj)
Angular momentum may be computed:

Li =
∑

Iijωj =⇒ L = I · ω
Rotational kinetic energy is found as:

Trot = 1
2

∑
mi(ω × rα)2 = 1

2ω ·L

= 1
2

∑
Iijωiωj sum over i and j

Principal moments of inertia are the
eigenvalues and principal axes are the
eigenvectors of the inertia tensor. (It is
easier if already partially diagonalized)

Euler Angles

Euler angles quantify angular velocity
with angles from fixed to body frames:
ω1= φ̇1+θ̇1+ψ̇1 = φ̇ sin(θ)sin(ψ)+θ̇ cos(ψ)

ω2= φ̇2+θ̇2+ψ̇2 = φ̇ sin(θ)cos(ψ)−θ̇ sin(ψ)

ω3= φ̇3+θ̇3+ψ̇3 = φ̇ cos(θ)+ψ̇

Torque is the sum of tangential forces:

Γ=

(
dL

dt

)
f

=

(
∂L

∂t

)
b

+ω×L⇒
(
∂L

∂t

)
b

=Γ−ω×L

For motions with external forces Γi:
I1ω̇1 = Γ1 − ω2ω3(I3 − I2)

I2ω̇2 = Γ2 − ω1ω3(I1 − I3)

I3ω̇3 = Γ3 − ω1ω2(I2 − I1)

Decoupling ODE Systems

Define normal coordinates as:
Qi = q · vi; vi normalized

Equations decouple with substitution

Ex. v1 = 1√
2

(1
1) , and v2 = 1√

2

(
1
−1

)
:

Q1 ≡ (q1 + q2)/2; Q2 ≡ (q1 − q2)/2

Coupled Oscillations

With coupled oscillations of two or
more oscillators, there appear normal
modes vi, and normal frequencies ωi,
which may be evaluated with initial
conditions to find a general solution.

• Draw a picture of your system
• Find L (as in Hamilton’s Eqs)
• Write Euler-Lagrange Equations

– Make it only include q̈i & qi
• Differentiate and use Ansatz

q1 = A1e
iωt; . . . qn = Ane

iωt

• Divide by eiωt

• Write matrix equation MA = 0
• Solve secular eqn |M | = 0 for ω2

i

• Write the n. mode frequencies ωi
• Solve for vi if (M − ω2

i 1)vi = 0
– Explicitly write the vectors
– Can normalize vTi Mvi = 1
– vi are orthogonal if ω2

i are
distinct, for symmetric M

• Write the general solution:

q=

q1...
qn

=
∑
i

Pivi cos(ωit−φi)

(
1
1

)
,
(

1
−1

)
⇒
(
A cos(ω1t−α)+B cos(ω2t−β)
A cos(ω1t−α)−B cos(ω2t−β)

)
• Solve for boundary conditions

– Explicitly write derivatives

Weak Coupling

The goal is to find q1(t) and q2(t).
• Write in uncoupled frequencies

– ω0 = (ω1 + ω2)/2
– =⇒ ω1 ≈ ω0(1 + ε)
– =⇒ ω2 ≈ ω0(1− ε)

• Solve for the general solution
• Make the solution a product

– Use Fourier’s Identities
– Write in terms of ε

Loaded String

The Lagrangian for the loaded string
with n masses m of spacing d at qj(t):

L =
1

2

n+1∑
j=1

mq̇2
j −

τ

d
(qj−1 − qj)2

Which has the equations of motion:

q̈j =
τ

md
(qj−1 − 2qj + qj+1)

With the Ansatz qj(t) = aje
iωt, then

qj(t) is sum over r=1, ..., n frequencies:

ajr=ar sin

(
j
rπ

n+1

)
; ωr=

√
4τ

md
sin

(
rπ

2(n+1)

)

Continuous Systems

General formulae for oscillating strings:
v=
√
T/ρ, λf=v, ω=2πf, k=ω/v=2π/λ

If both ends are at rest, Fourier Sines:

an=
2

L

∫ L

0

dx q(x, 0) sin
(nπ
L
x
)
; bn ∼ q̇(x, 0)

ωn=

√
τ

ρ

2

d
sin

(
nπ

L

d

2

)
d→0
==⇒ ωn=

√
τ

ρ

nπ

L

q(x, t)=
∑

n

(
ancos(ωnt)+

bn

ωn
sin(ωnt)

)
sin

(
nπ

L
x

)
For driving forces, think about how to
expand F (x, t), and how the Fourier
Expansion changes. Draw a diagram.

Wave equation, Helmholtz equation:
∂2Ψ

∂x2
=

1

v2

∂2Ψ

∂t2
;
∂2ψn
∂x2

+ k2
nψ = 0

May be solved by two separation types:
Ψ(x, t) = f(x+ vt) + g(x− vt)

(or) Ψ(x, t) =
∑

n
ψn(x) exp(iωnt)

Phase, vp, and group, vg, velocities:

vp =
ω

k
and vg =

dω

dk
for k =

nπ

L

Special Relativity

Einstein’s Special Relativity postulates:
I. Same physical laws in all inertial frames.

II. Light’s speed is a universal constant.

Times and distances measured in their
own frames are known as “proper.”

Galilean invariance gives the transform
between frames of x′1 = x1 − vt, t′ = t.
With v in the x1 direction, the Lorentz
transformation from the stationary x1

frame to the moving x′1 frame is, with

β = v/c and the factor γ = 1/
√

1− β2:

x′1 = γ(x1−vt)
x′2 = x2

x′3 = x3

t′ = γ

(
t− vx1

c2

)





x1 = γ(x′1+vt
′)

x2 = x′2

x3 = x′3

t = γ

(
t′+

vx′1
c2

)


ẋ′1 =(ẋ1−v)/(1−ẋ1v/c

2)

ẋ′2 = ẋ2/(γ(1− ẋ1v/c
2))

ẋ′3 = ẋ3/(γ(1− ẋ1v/c
2))


With l in x frame, and observer in x′

frame seeing both ends at same time:

l′ = l/γ = l
√

1− β2

With t at a fixed location in x frame,
and observer in x′ frame:

∆t′ = t′2 − t′1 = γ∆t = ∆t/
√

1− β2

Relativistic Doppler effect for receding
v < 0 and nearing v > 0, with λf = c:

fdetect =

√
1 + β√
1− β

femit ⇔ λd =

√
1− β√
1 + β

λe
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