Jacobians

The Jacobian matrix in 2 D is

$$
J=\left(\begin{array}{ll}
\frac{\partial x}{\partial x^{\prime}} & \frac{\partial x}{\partial y^{\prime}} \\
\frac{\partial y}{\partial x^{\prime}} & \frac{\partial y}{\partial y^{\prime}}
\end{array}\right)
$$

Whence the integral is $(|J|=\operatorname{det}(J))$:
$\int d x d y f(x, y)=\int|J| d x^{\prime} d y^{\prime} f\left(x\left(x^{\prime}, y^{\prime}\right), \ldots\right)$
Commonly encountered Jacobians:

$$
\begin{gathered}
|J|_{\text {cartesian }}=1 \\
|J|_{\text {polar }}=r \\
|J|_{\text {cylindrical }}=r \\
|J|_{\text {spherical }}=r^{2} \sin (\theta)
\end{gathered}
$$

Path Lengths

The differential path lengths are

$$
\begin{gathered}
d s_{\text {cartesian }}=\sqrt{d x^{2}+d y^{2}+d z^{2}} \\
d s_{\text {polar }}=\sqrt{d r^{2}+r^{2} d \phi^{2}} \\
d s_{\text {cylindrical }}=\sqrt{d r^{2}+r^{2} d \phi^{2}+d z^{2}} \\
d s_{\text {sphere }}=\sqrt{d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}}
\end{gathered}
$$

Spherical Coordinates

Now in spherical coordinates we have

$$
\begin{gathered}
x=r \sin (\theta) \cos (\phi) \\
y=r \sin (\theta) \sin (\phi) \\
z=r \cos (\theta)
\end{gathered}
$$

Polar Forces

We can decompose forces as

$$
\begin{gathered}
F_{r}=m\left(\ddot{r}-r \dot{\phi}^{2}\right) \\
F_{\phi}=m(r \ddot{\phi}+2 \dot{r} \dot{\phi})
\end{gathered}
$$

This identity sometimes is helpful:

$$
\dot{r}^{2}=\dot{r}^{2}+r^{2} \dot{\phi}^{2}
$$

TRIGONOMETRY

The law of cosines is:

$$
a^{2}+b^{2}-2 a b \cos (\gamma)=c^{2}
$$

The Pythagorean identities are:

$$
\begin{aligned}
& \cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \\
& \sec ^{2}(\theta)-\tan ^{2}(\theta)=1 \\
& \csc ^{2}(\theta)-\cot ^{2}(\theta)=1
\end{aligned}
$$

The double-angle identities are:

$$
\begin{aligned}
& \cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2} \\
& \sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2}
\end{aligned}
$$

General Math

The dot product of two vectors:

$$
\boldsymbol{A} \cdot \boldsymbol{B}=\|\boldsymbol{A}\|\|\boldsymbol{B}\| \cos (\theta)
$$

The cross product of two vectors:

$$
\|\boldsymbol{A} \times \boldsymbol{B}\|=\|\boldsymbol{A}\|\|\boldsymbol{B}\| \sin (\theta)
$$

The divergence theorem:

$$
\int_{V}(\boldsymbol{\nabla} \cdot \boldsymbol{A}) d V=\oint_{\partial V} \boldsymbol{A} \cdot d \boldsymbol{S}
$$

Stokes theorem is:

$$
\int_{S}(\boldsymbol{\nabla} \times \boldsymbol{A}) \cdot d \boldsymbol{S}=\int_{\partial S} \boldsymbol{A} \cdot d \boldsymbol{l}
$$

Physics 1 Knowledge

The center of mass position is:

$$
\boldsymbol{r}_{\mathrm{com}}=\frac{1}{m_{\mathrm{tot}}} \sum_{i} m_{i} \boldsymbol{r}_{i}
$$

And the linear momentum is:

$$
\boldsymbol{p}=m_{\mathrm{tot}} \dot{\boldsymbol{r}}_{\mathrm{com}}
$$

Where Newton's second law is:

$$
\dot{\boldsymbol{p}}=\boldsymbol{F}=m \boldsymbol{a}
$$

The kinetic energy is then:

$$
T=\frac{p^{2}}{2 m}
$$

And the total energy is

$$
E=T+U
$$

More Physics 1 Knowledge
For conservative forces

$$
\boldsymbol{\nabla} \times \boldsymbol{F}=0
$$

which holds if and only if

$$
\boldsymbol{F}=-\nabla U
$$

We also have the work-energy theorem

$$
d T=\boldsymbol{F} \cdot d \boldsymbol{r}
$$

which is

$$
W=-\int \boldsymbol{F} \cdot d \boldsymbol{r}
$$

The position as a function of time is:

$$
x(t)=x(0)+\int_{0}^{t} d \tau v_{x}(\tau)
$$

The time-average of a quantity f is

$$
\langle f\rangle=\frac{1}{\tau} \int_{0}^{\tau} d t f(t)
$$

For a spring-block system with spring stiffness k, the motion is

$$
x(t)=A \cos (\omega t-\phi)
$$

$\omega=\sqrt{k / m}$ is the angular frequency.
Projectile motion with only gravity above a flat surface lasts for a time

$$
t_{\text {final }}=\frac{2 v_{0} \sin (\theta)}{g}
$$

Where the distance traveled is

$$
x\left(t_{\text {final }}\right)=\frac{v_{0}^{2}}{g} \sin (2 \theta)
$$

Non-relativistic rocket motion is described by the change in momentum with respect to time

$$
\dot{p}=m \dot{\boldsymbol{v}}=-\dot{m} \boldsymbol{v}_{\text {exhaust }}+\boldsymbol{F}_{\mathrm{ext}}
$$

The motion of a massive particle in the presence of a magnetic field is circular with "cyclotron" radius

$$
r=\frac{v}{\omega}
$$

where the cyclotron frequency is

$$
\omega=\frac{q B}{m}
$$

Elastic collisions are ones for which T is preserved. Additionally when no external forces are applied, $\boldsymbol{p}, \boldsymbol{L}$, and E are conserved.

Physics 105A at UCLA \diamond Formula Sheet (2 of 2)

Drag \& Terminal Velocity

At small v, drag is linear for a sphere of diameter d

$$
\boldsymbol{F}_{\mathrm{drag}}=-3 \pi \eta d \boldsymbol{v}
$$

At large v, drag is quadratic

$$
\boldsymbol{F}_{\mathrm{drag}}=-\gamma d^{2} v^{2} \hat{\boldsymbol{v}}
$$

At terminal velocity, the forces balance

$$
v_{\mathrm{ter}}^{\operatorname{lin}}=\frac{m g}{b}
$$

And for quadratic drag

$$
v_{\mathrm{ter}}^{\mathrm{quad}}=\sqrt{\frac{m g}{c}}
$$

Driven \& Damped
 Oscillations

Generically a driven-damped oscillator takes the form

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0} x=f(t)
$$

Which is solved by

$$
x(t)=x_{h}+x_{p}
$$

x_{h} is the homogeneous solution that can be found from the characteristic polynomial, and x_{p} is the particular solution that can be found by the method of undetermined coefficients.

When the driving vanishes

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0
$$

and the solution is
$x(t)=e^{-\beta t}\left(c_{1} e^{\sqrt{\beta^{2}-\omega_{0}^{2}} t}+c_{2} e^{-\sqrt{\beta^{2}-\omega_{0}^{2}} t}\right)$
There are then four regimes:

- $\beta=0$: undamped
- $\beta<\omega_{0}$: underdamped
- $\beta=\omega_{0}$: critically damped
- $\beta>\omega_{0}$: overdamped

Angular Momentum

The angular momentum is ($\omega=\dot{\phi}$)

$$
\boldsymbol{L}=I \boldsymbol{\omega}=\boldsymbol{r} \times \boldsymbol{p}
$$

For example, the z-component is

$$
L_{z}=x p_{y}-y p_{x}
$$

The torque is

$$
\Gamma=\dot{L}=r \times \boldsymbol{F}
$$

Moment of Inertia

The moment of inertia is

$$
I=\sum_{i} m_{i} r_{i}^{2}
$$

Which can be obtained from the com frame using the parallel axis theorem:

$$
I=I_{\mathrm{com}}+m d^{2}
$$

For a uniform disk:

$$
I_{\text {disk }}=\frac{1}{2} m r^{2}
$$

For a uniform sphere:

$$
I_{\text {sphere }}=\frac{2}{5} m r^{2}
$$

The angular kinetic energy is then

$$
T=\frac{1}{2} I \omega^{2}
$$

Reduced Mass \& Effective
 Potential

The reduced mass μ of a two-body system is defined so that we obtain

$$
\boldsymbol{L}=\boldsymbol{r} \times \mu \dot{\boldsymbol{r}}
$$

For radial motion there is the analogue of Newton's second law

$$
\mu \ddot{r}=-\frac{d}{d r} U_{\text {eff }}(r)
$$

Where the effective potential is

$$
U_{\mathrm{eff}}(r)=U(r)+\frac{L^{2}}{2 \mu r^{2}}
$$

Kepler's Laws

1. The planets orbit the sun in ellipses, and the sun is at one focus
2. Equal areas are swept out in equal times

$$
\frac{d \boldsymbol{A}}{d t}=\frac{\boldsymbol{L}}{2 m}=\frac{r^{2} \boldsymbol{\omega}}{2}
$$

3. The period is proportional to the semi-major axis, a, to the $3 / 2$

$$
\tau=\sqrt{\frac{4 \pi^{2}}{G_{N} M_{\odot}}} a^{3 / 2}
$$

In polar coordinates the motion is

$$
r(\phi)=\frac{c}{1+\epsilon \cos (\phi)}
$$

Where the eccentricity is

$$
\epsilon=\frac{A L^{2}}{\gamma \mu}
$$

Euler-Lagrange Equations

The Lagrangian is

$$
\mathcal{L}=T-U
$$

Which leads to the Euler-Lagrange equations, which are equivalent to Newton's equations

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}}-\frac{\partial \mathcal{L}}{\partial x}=0
$$

It turns out that the trajectories systems take are those that make the action S stationary

$$
S=\int d t \mathcal{L}
$$

